This is the second lesson in a series of lessons to teach you how to create a DirectX 12 powered application from scratch. In this lesson, vertex and index data is uploaded to the Graphics Processing Unit (GPU) for rendering. Basic vertex and pixel shaders are described and how to create a Pipeline State Object (PSO) that utilizes those shaders is also described. A root signature defines the parameters that are used by the stages of the rendering pipeline. In this lesson a simple root signature is created that defines a single constant buffer that contains the Model-View-Projection (MVP) matrix that is used to rotate a model in the scene.
Tag Archives: games
Forward vs Deferred vs Forward+ Rendering with DirectX 11
In this article, I will analyze and compare three rendering algorithms:
- Forward Rendering
- Deferred Shading
- Forward+ (Tiled Forward Rendering)
Introduction to DirectX 11
In this article, I will introduce the reader to DirectX 11. We will create a simple demo application that can be used to create more complex DirectX examples and demos. After reading this article, you should be able to create a DirectX application and render geometry using a simple vertex shader and pixel shader.
Using OpenGL Vertex Buffer Objects
If you are not sure how to use extensions in OpenGL, you can refer to my previous article titled OpenGL Extensions. If you have never programmed an OpenGL application before, you can refer to my previous article titled Introduction to OpenGL.
Projected Shadow Mapping with Cg and OpenGL
In this article, I will show how to implement projective shadow mapping in OpenGL using Cg shaders.
The basis of this post comes from the article titled [Transformation and Lighting in Cg]. I will assume the reader has a basic understanding of OpenGL and already knows how to setup an application that uses OpenGL. If you require a refresher on setting up an application using OpenGL, you can refer to my previous article titled [Introduction to OpenGL for Game Programmers].
I will take advantage of a few OpenGL extensions such as GL_ARB_framebuffer_object to create a offscreen framebuffer to render to and and GL_ARB_texture_border_clamp for clamping to the border color of the projective textures.
Normal Mapping with Cg and OpenGL
In this article, I will discuss a technique called normal mapping. Normal mapping is a shader technique that encodes pre-computed surface normals in a texture that can be used to add extra detail to a surface without the requirement of adding extra geometry. Before reading this article, you should have a basic understanding of OpenGL and you should know how to setup a Cg shader. For a review on OpenGL, you can refer to my previous article titled [Introduction to OpenGL for Game Programmers] and to learn how to incorporate Cg shaders in your own applications, you can refer to my article titled [Introduction to Cg Runtime with OpenGL].
Environment Mapping with Cg and OpenGL
In this article I will demonstrate an effect called Environment Mapping. Environment mapping attempts to simulate the effect of reflective or refractive surfaces in a shader rasterizer. I assume the reader has a basic understanding of OpenGL and Cg. If you require an introduction in OpenGL, you can refer to my article titled [Introduction to OpenGL for Game Programmers]. And for an introduction to Cg, you can refer to my article titled [Introduction to Cg Runtime with OpenGL].
Continue reading
GPU Skinning of MD5 Models in OpenGL and Cg
This tutorial builds upon the previous article titled [Loading and Animating MD5 Models with OpenGL]. It is highly recommended that you read the previous article before following this one. In this tutorial, I will extend the MD5 model rendering to provide support for GPU skinning. I will also provide an example shader that will perform the vertex skinning in the vertex shader and do per-fragment lighting on the model using a single point light. For a complete discussion on lighting in CgFX, you can refer to my previous article titled [Transformation and Lighting in Cg].
Continue reading
Transformation and Lighting in Cg
In this article I will demonstrate how to implement a basic lighting model using the Cg shader language. In this article, I assume the reader is familiar with the OpenGL graphics API and how to setup an application that uses OpenGL. If you want to see how you can setup an application that can be used to do OpenGL graphics rendering, you can refer to my previous article titled [Introduction to OpenGL for Game Programmers].
Introduction to Cg Runtime with OpenGL
I will assume that the reader has some basic knowledge of OpenGL and how to create an application that uses OpenGL to render graphics to the screen. If you need a brief introduction to OpenGL, you can refer to my article [Introduction to OpenGL for Game Programmers]