
UTRECHT UNIVERSITY

MASTER THESIS

Volume Tiled Forward Shading

Author:
Jeremiah VAN OOSTEN

Supervisor:
Dr. Jacco BIKKER

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Game and Media Technology
Department of Information and Computing Sciences

July 18, 2017

http://www.uu.nl
http://www.cs.uu.nl/info/studie/master/gmt.php
http://www.cs.uu.nl/

iii

Declaration of Authorship
I, Jeremiah VAN OOSTEN, declare that this thesis titled, “Volume Tiled For-
ward Shading” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

“Perfection is not attainable, but if we chase perfection we can catch excellence.”

Vince Lombardi

vii

UTRECHT UNIVERSITY

Abstract
Faculty of Science

Department of Information and Computing Sciences

Master of Science

Volume Tiled Forward Shading

by Jeremiah VAN OOSTEN

In order to achieve a greater degree of visual fidelity, graphics program-
mers are constantly seeking methods to push the limits of what is possible
in graphics hardware. In this thesis, we describe Volume Tiled Forward
Shading, a new lighting technique based on Tiled Forward and Clustered
Forward Shading from Ola Olsson et. al. By constructing a Bounding Vol-
ume Hierarchy over the lights in the scene, we are able to demonstrate that
a scene containing millions of light sources can be rendered in real-time us-
ing Volume Tiled Forward Shading. Volume Tiled Forward Shading proves
to be a viable technique to achieve real-time frame rates in scenes contain-
ing many light sources.

HTTP://WWW.UU.NL
http://www.cs.uu.nl/
http://www.cs.uu.nl/

ix

Acknowledgements
I would like to thank my thesis supervisor Dr. Jacco Bikker for guid-

ing me through the process of writing this document. His own pursuit of
perfection through graphics programming is the inspiration of many.

I would also like to thank Bert Heesakkers for supporting me when I
encountered a road block or when I just needed someone to bounce ideas
off of. His patience and feedback was crucial to the success of this project.

I would also like to thank my girlfriend Suzanne Dingemans and our
three boys Lucas, Thomas and Daniel for their patience and understanding
over the last few years when, at times, I needed to prioritize this master
project over them.

I would also like to recognize my team coordinator Robert Grigg for
providing a balance between my work and master’s schedule.

I would also like to thank the NVIDIA Corporation for providing the
GPU resources that made creating the experiment for this thesis possible.

http://www.nvidia.com/

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question . 6

2 Background 7
2.1 Previous Work . 7

2.1.1 Forward Rendering . 9
2.1.2 Deferred Shading . 10

Geometry Pass . 11
Lighting Pass . 14

2.1.3 Tiled Forward Shading 16
Cull Lights . 16
Shade Samples . 19
Depth Prepass . 19

2.1.4 Clustered Shading . 21
Cluster Assignment 21
Find Unique Clusters 22
Assign Lights . 23
Shade Samples . 23

2.2 Summary . 24

3 GPU Architecture 27
3.1 Introduction . 27
3.2 Thread Dispatch . 27
3.3 Coalesced Access to Global Memory 29
3.4 Avoid Bank Conflicts . 30

4 Parallel Primitives 33
4.1 Introduction . 33
4.2 Reduction . 33
4.3 Scan . 37

5 Sorting 41
5.1 Introduction . 41
5.2 Radix Sort . 41
5.3 Merge Sort . 44

xii

6 Morton Code 49
6.1 Introduction . 49
6.2 Minimum Bounding Volume 49
6.3 Compute Morton Codes . 51

7 Bounding Volume Hierarchy 55
7.1 Introduction . 55
7.2 BVH Construction . 56

7.2.1 Build Leaf Nodes . 56
7.2.2 Build Upper Nodes . 57

7.3 BVH Traversal . 57

8 Implementation 61
8.1 Introduction . 61
8.2 Volume Tiled Forward Shading 61

8.2.1 Initialization . 62
Compute Grid Size . 62
Compute AABBs . 62

8.2.2 Update . 64
Depth Pre-pass . 65
Mark Active Tiles . 65
Build Tile List . 66
Assign Lights to Tiles 66
Shade Samples . 67

8.2.3 Optimization . 68
8.3 Summary . 69

9 Experiment Setup 71
9.1 Introduction . 71
9.2 Application . 71
9.3 Graphics API . 71
9.4 GPU Hardware . 71
9.5 Scenes . 72
9.6 Algorithms . 73
9.7 Profiling . 73
9.8 Tests . 74

10 Results 75
10.1 Introduction . 75
10.2 Forward Rendering . 75
10.3 Tiled Forward Shading . 78
10.4 Volume Tiled Forward Shading 81
10.5 Volume Tiled Forward Shading (BVH) 85
10.6 Techniques Compared . 90
10.7 Rate of Increase . 94
10.8 Summary . 95

11 Conclusion & Future Work 97
11.1 Summary . 97
11.2 Future Work . 97

11.2.1 Reducing Draw Calls 98
11.2.2 Self-Similar Volume Tiles 98

xiii

11.2.3 Improved Sorting . 99
11.3 Conclusion . 99

Bibliography 101

xv

List of Figures

1.1 G-Buffer . 3
1.2 TiledForwardShading . 4
1.3 Tile-Frustum-Culling-Point-Light 5

2.1 Forward shading considers all lights to shade every geomet-
ric object in the scene. 10

2.2 Deferred shading operates in two passes: Geometry pass and
the lighting pass. 11

2.3 The output of the depth/stencil buffer (Oosten, 2015). 12
2.4 The output of the light accumulation buffer. The image has

been brightened to improve visibility (Oosten, 2015). 12
2.5 The Normal buffer stores the view space normal of the ge-

ometry. In this image, all three normal components are visu-
alized (Oosten, 2015). 13

2.6 The speuclar buffer stores the specular color and specular
power (Oosten, 2015). 14

2.7 The diffuse buffer stores the diffuse contribution (Oosten,
2015). 14

2.8 Mark pixels in front of the far light boundary. 15
2.9 Find pixels inside the light volume and compute shading. . 15
2.10 Tile Frustum . 16
2.11 Light Grid . 17
2.12 The data structures that are used to store the per tile light

lists. The Light Grid stores the offset and the number of lights
in the global Light Index List for each tile. 18

2.13 The blue objects in the image represent opaque scene ob-
jects. The yellow spheres represent light sources, and the
gray shanded areas represent the depth range of the tile’s
view space frustum. Light 1 is incorrecty included in the
frustum for Object 1 because the object partially covers the
first tile creating a depth discontinuity in the tile (Oosten, 2015). 20

2.14 Light Culling . 21
2.15 Cluster Grid . 22
2.16 Quantized Normals . 23
2.17 Cluster Key . 23
2.18 Cluster Keys . 24

3.1 The dispatch consists of thread groups. Each thread group
consists of a number of threads. This image shows a two-
dimensional dispatch but the dispatch can be either one, two,
or three-dimensional. 28

3.2 Pascal GP104 Streaming Multiprocessor architecture. 29

xvi

3.3 Global memory segments are 32B for 1B words, 64B for 2B
words, and 128B for 4 , 8 , and 16B words. 30

3.4 Each thread in a warp accesses a 16B (4-component floating-
point value) from global memory. This will result in 4 128B
memory transactions. 30

3.5 The shared memory is accessed by each thread with a stride
of two. In this case, a 2-way bank conflict occurs. This will
result in 2 serialized reads from shared memory. 31

3.6 If every thread in a warp accesses the same address of a
shared memory bank then the value is broadcast to all threads.
In this case, no bank conflict occurs and all reads can be per-
formed simutaniously (Oosten, 2011). 31

3.7 This image shows an example of linear addressing. If each
thread in a warp accesses a different shared memory bank,
then no bank conflict occurs. 32

4.1 Serial reduction applied over an array of eight values. 34
4.2 Pair-wise log-step reduction. This method does not make op-

timal use of memory access patterns in GPU memory. 34
4.3 Interleaved log-step reduction. Accessing both global and

shared memory is optimized. 35
4.4 Bank conflicts are avoided when using an interleaved access

pattern. 35
4.5 Parallel scan. For each iteration i of the parallel scan, each

thread t larger than 2i computes x[t]⊕x[t− 2i] and stores the
result at index t. 39

5.1 In order to sort the keys, a hybrid sorting approach is used.
The unsorted keys are first sorted into chunks of 256 keys
using a parallel radix sort. A merge sort is repeatedly applied
to the sorted chunks to produce the final sorted list. 42

5.2 Radix sort loops over the bits of the key starting at the least-
significant bit. All keys with a 0 in the bit are placed before
keys with a 1. The process is repeated for each bit resulting
in a sorted list. 42

5.3 The radix sort algorithm applied to the least significant bit of
the input. 44

5.4 The serial merge can be visualized as a grid that is formed by
placing the elements of A in the columns of the grid and the
elements of B in the rows of the grid. The red line in repre-
sent the merge path that is the result of merging the elements
of A and B to form the sorted list C. 46

5.5 The green diagonal line represents the split that is made to
parallelize the merge sort function. Where the diagonal line
intersects the merge path indicates the values from A and
B that will be sorted by each thread. In this example, the
diagonal split occurs every 8 values. In this case 4 values
from A and 4 values from B will be merged by each thread. 46

6.1 Z-order curve (Dickau, 2008). 51

xvii

6.2 The integer representation of a coordinate in 3D space (A);
The 4-bit binary representation of the coordinates (B); The
result of interleaving the bits of the coordinate components
(C); The resulting 12-bit Morton code in decimal representa-
tion (D). 52

7.1 A Bounding Volume Hierarchy built over several primitives
in 2D space (Karras, 2012). 55

7.2 In the first phase of the BVH construction, the AABB of the
child nodes of the last level of the BVH tree are computed
from the sorted scene primitives. In the second phase of the
BVH construction, the upper nodes are computed. 56

8.1 The AABB for the volume tile. 64
8.2 The result of the depth pre-pass. 65
8.3 A single slice of the volume light grid (A). The light grid

stores the light count and an offset into the light index list
(B). The light index list stores the index of the light source in
the light list (C). 68

8.4 The Crytek Sponza scene rendered using Volume Tiled For-
ward Shading. 68

9.1 The Sponza Atrium scene (Crytek, 2010) 72
9.2 The San Migule hacienda (McGuire, 2017) 73
9.3 The scene contains 65,536 lights. The image on the left shows

an average light density of 4.85 light/unit3 while the image
on the right shows an average light density of 1 light/unit3. 74

10.1 Sponza Atrium scene using Forward Rendering. 76
10.2 San Miguel scene using Forward Rendering. 77
10.3 San Miguel scene showing the two large trees in the middle

of the hacienda. Each leaf on the tree is a transparent quad
causing a lot of overdraw. 78

10.4 Chart showing performance of rendering the Sponza scene
using Tiled Forward Shading with increasing light density. . . 79

10.5 Chart showing performance of rendering the Sponza scene
using Tiled Forward Shading with maximum light density of
1 light/unit3. 80

10.6 Chart showing performance of rendering the Sponza scene
using Volume Tiled Forward Shading with increasing light den-
sity. 82

10.7 Chart showing performance of rendering the Sponza scene
using Volume Tiled Forward Shading with maximum light den-
sity of 1 light/unit3. 83

10.8 Chart showing performance of rendering the San Miguel scene
using Volume Tiled Forward Shading with maximum light den-
sity of 1 light/unit3. 84

10.9 Chart showing performance of rendering the Sponza scene
using Volume Tiled Forward Shading with BVH with increasing
light density. 86

xviii

10.10Chart showing performance of rendering the Sponza scene
using Volume Tiled Forward Shading with BVH with maximum
light density of 1 light/unit3. 87

10.11Chart showing performance of rendering the San Miguel scene
using Volume Tiled Forward Shading with BVH with maximum
light density of 1 light/unit3. 89

10.12Chart showing relative performance of rendering the Sponza
scene using Forward, Tiled Forward, Volume Tiled Forward, and
Volume Tiled Forward Shading with BVH with an increasing
light density. 90

10.13Chart showing relative performance of rendering the Sponza
scene using Tiled Forward, Volume Tiled Forward, and Volume
Tiled Forward Shading with BVH with a maximum light den-
sity of 1 light/unit3. The performance of traditional Forward
Rendering is omitted from this chart because the timings start
at 30,000 light sources which is already too many lights to
gather any useful timings. 92

10.14Chart showing relative performance of rendering the San Miguel
scene using Forward, Tiled Forward, Volume Tiled Forward, and
Volume Tiled Forward Shading with BVH with a maximum light
density of 1 light/unit3. 93

xix

List of Tables

10.1 Timings for rendering the Sponza Atrium scene using For-
ward Rendering. 76

10.2 Timings for rendering the San Miguel scene using Forward
Rendering. 77

10.3 Timings for rendering the Sponza scene using Tiled Forward
Shading with increasing light density. 79

10.4 Timings for rendering the Sponza scene using Tiled Forward
Shading with maximum light density of 1 light/unit3. 80

10.5 Timings for rendering the Sponza scene using Volume Tiled
Forward Shading with increasing light density. The Depth Prepass,
Mark Active Tiles, and Build Tile List data is omitted from this
table to conserve space. 82

10.6 Timings for rendering the Sponza scene using Volume Tiled
Forward Shading with maximum light density of 1 light/unit3.
The Depth Prepass, Mark Active Tiles, and Build Tile List tim-
ings are omitted from this table to conserve space. 83

10.7 Timings for rendering the San Miguel scene using Volume
Tiled Forward Shading with maximum light density of 1 light/unit3.
The Depth Prepass, Mark Active Tiles, and Build Tile List tim-
ings are omitted from this table to conserve space. 85

10.8 Timings for rendering the Sponza scene using Volume Tiled
Forward Shading with BVH with increasing light density. The
Reduce Lights, Compute Morton Codes, Depth Prepass, Mark Ac-
tive Tiles, and Build Tile List timings are omitted from this ta-
ble to conserve space. 87

10.9 Timings for rendering the Sponza scene using Volume Tiled
Forward Shading with BVH with maximum light density of
1 light/unit3. The Reduce Lights, Compute Morton Codes, Depth
Prepass, Mark Active Tiles, and Build Tile List timings are omit-
ted from this table to conserve space. 88

10.10Timings for rendering the San Miguel scene using Volume
Tiled Forward Shading with BVH with maximum light density
of 1 light/unit3. The Reduce Lights, Compute Morton Codes,
Depth Prepass, Mark Active Tiles, and Build Tile List timings
are omitted from this table to conserve space. 89

10.11Timings showing relative performance of rendering the Sponza
scene using Forward, Tiled Forward, Volume Tiled Forward, and
Volume Tiled Forward Shading with BVH with an increasing
light density. 91

10.12Timings showing relative performance of rendering the Sponza
scene using Tiled Forward, Volume Tiled Forward, and Volume
Tiled Forward Shading with BVH with a maximum light den-
sity of 1 light/unit3. 92

xx

10.13Timings showing relative performance of rendering the San
Miguel scene using Forward, Tiled Forward, Volume Tiled For-
ward, and Volume Tiled Forward Shading with BVH with a max-
imum light density of 1 light/unit3. 94

10.14Relative rate of increase (r) for Forward Rendering (FR), Tiled
Forward Shading (TFS), Volume Tiled Forward Shading (VTFS),
and Volume Tiled Forward Shading with BVH (VTFSBVH). . . 95

xxi

List of Algorithms

2.1 Forward Rendering. 8
2.2 Cull lights algorithm . 18
4.1 Interleaved log-step parallel reduction. 36
4.2 Interleaved log-step parallel reduction with warp-synchronous

optimization. 37
4.3 Sequential scan. 38
4.4 Parallel scan. 38
5.1 Parallel radix sort. 43
5.2 Serial merge sort. 45
5.3 Parallel merge path partition. 47
5.4 Parallel merge sort. 48
6.1 First pass of the parallel reduction. 50
6.2 Compute the k-bit Morton code for quantized coordinate c. . 52
6.3 Compute k-bit Morton codes for the lights. 53
7.1 Build the leaf nodes of the BVH. 57
7.2 Traverse the BVH and append overlapping lights to the light

list. 58
8.1 Compute Volume Tile AABBs 63
8.2 Mark Active Tiles . 66
8.3 Build Tile List . 66
8.4 Assign lights to tiles. 67

xxiii

List of Abbreviations

AABB Axis-Aligned Bounding Box
API Application Programming Interface
ARB Architecture Review Board
BVH Bounding Volume Hierarchy
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DSV Depth-Stencil View
DX DirectX
FXAA Fast Approximate Anti-Aliasing
GPU Graphics Processing Unit
LSD Least Significant Digit
MSAA Multi-Sample Anti-Aliasing
MSD Most Significant Digit
NDC Normalized Device Coordinates
OGL Open Graphics Library
SDK Software Development Kit
RTV Render Target View
SM Streaming Multiprocessor
SRV Shader Resource View
UAV Uniform Access View

xxv

Dedicated to my children Lucas, Thomas, and Daniel.
May your lives be a continuous journey of learning.

1

Chapter 1

Introduction

1.1 Motivation

In the eternal pursuit of achieving photo-realistic computer generated im-
ages, graphics programmers are continually trying to find improved ren-
dering techniques to produce realistic images at "real-time" frame rates.
Since the advent of the first viable commercial hardware-accelerated 3D
graphics adapters in 1996 (Singer, 2013) there have been many advances
in rendering techniques that improve upon previous techniques in one or
more ways.

The first graphics adapters that supported the OpenGL 1.0 API featured
a fixed-function rendering pipeline that performed per-vertex lighting cal-
culations in the Texturing and Lighting stage. The lighting equation that was
used to compute the vertex color was specified in the specification docu-
ment (Segal and Akeley, 1994) and could not be modified by the graphics
programmer. The OpenGL specification required that vendors supported a
minimum of eight hardware lights but the number of lights that could ac-
tually be enabled in the scene was dependent on the scene complexity and
the performance of the GPU hardware.

The common term used to refer to the rendering technique described in
the OpenGL 1.0 API specification is Forward Rendering. Forward Rendering
is the process of pushing geometry forward through the rendering pipeline
and applying the same stages of the rendering pipeline to each geometric
object in order to produce the final image. For each object pushed through
the rendering pipeline, the Forward Rendering technique applies the lighting
equation for each active light in the scene regardless of the lights contribu-
tion to the final color of the pixel being rendered. Without the ability to pro-
grammatically modify the Texturing and Lighting stage of the fixed-function
pipeline, it was difficult to further optimize this technique.

Programmable vertex shaders were not available until November 2000
when Microsoft released the first vertex shader profile (vs_1_1) together
with the DirectX 8.0 SDK (Oosten, 2014). Although the number of shader in-
structions was limited to 128, it was the first time the graphics programmer
could bypass the Texturing and Lighting stage of the fixed-function pipeline
and implement their own lighting functions.

Two years after the release of DirectX 8.0, the DirectX 9.0 SDK was re-
leased. In addition to programmable vertex shaders, DirectX 9.0 introduced
the programmable pixel shader profile (ps_2_0). That same year the vertex

2 Chapter 1. Introduction

and fragment program extensions were added to the list of standard exten-
sions accepted by the OpenGL Architecture Review Board (ARB). The ver-
tex and fragment program extension were added to the OpenGL 2.0 stan-
dard on October 22, 2004 (Segal and Akeley, 2004).

With the introduction of programmable shaders, which occurred at the
turn of the 20th century, the graphics programmer was free to implement
the vertex and pixel shader stages of the rendering pipeline. But even
with the power to change the way shading was performed in the render-
ing pipeline, GPUs were still limited by their computational performance.
Programmable pixel shaders (fragment programs in OpenGL) made per-
pixel lighting calculations possible. Per-pixel lighting allows for the light-
ing equation to be applied to every visible pixel. Traditional Forward Ren-
dering uses a brute-force approach to compute the shading of a pixel by
considering every active light in the scene. Using this technique, the num-
ber of active lights in a scene was limited by the performance of the GPU
hardware. For this reason, various shading techniques were introduced in
an effort to increase lighting complexity than was previously possible using
traditional Forward Rendering.

One such technique that attempts to increase the number of active lights
in the scene is called Deferred Shading (Saito and Takahashi, 1990; Geldre-
ich and Pritchard, 2004; Shishkovtsov, 2006; Leeuw, 2007; Mittring, 2009).
Deferred Shading is a technique that uses several image buffers to store ge-
ometric information that is used to compute the lighting information in a
later pass. The types of information that are stored in the image buffers are:

• material diffuse color

• material specular color (RBG) and specular power (A)

• surface normals

• screen space depth values

The combination of all of these buffers is referred to as the Geometric
Buffer or simply the G-buffer (Saito and Takahashi, 1990).

In the second pass of Deferred Shading all of the dynamic lights in the
scene are rendered as geometric objects. Point lights are rendered as spheres,
spot lights as cones, and directional lights are rendered as full-screen quads.
The depth buffer and stencil buffer are used to discard fragments that are
not affected by any light sources.

One of the benefits of Deferred Shading compared to Forward Shading is
that the expensive lighting calculations are only computed for fragments
that are influenced by a light source. There is also less overdraw on frag-
ments that are occluded by other geometry in the scene which reduces the
amount of redundant lighting calculations that must be performed.

The disadvantage of Deferred Shading is that only opaque objects can be
rasterized into the G-buffer. Objects with transparent materials can cover
(but not occlude) both opaque and other transparent objects, but the mul-
tiple layers required to describe transparent objects cannot be represented
in the 2D image buffers that compose the G-buffer. Therefore rendering
pipelines that use the Deferred Shading technique must also rely on an addi-
tional Forward Rendering pass to render transparent objects.

1.1. Motivation 3

FIGURE 1.1: Deferred shading: Several buffers are used
to describe the G-buffer. Diffuse (top-left), specular (top-

right), normals (bottom-left), and depth (bottom-right).

Another disadvantage of Deferred Shading is that only a single lighting
model can be simulated in the lighting pass. Since only a single pixel shader
can be bound to the rendering pipeline when the light geometry is ren-
dered, it is not possible to switch lighting models depending on the object
that is being lit by the invocation of the pixel shader.

Another disadvantage of Deferred Shading is that Multi-Sample Anit-Aliasing
(MSAA) (Microsoft, 2017) is not supported. MSAA works by invoking the
pixel shader several times at various sub-pixel offsets and the final pixel
color is determined by blending the results based on the pixel coverage.
Since the lighting pass can only sample from a single fragment in the G-
buffer, MSAA cannot be used to produce the G-buffer targets. Enabling
MSAA for the lighting pass will not produce the correct results since only
the geometry representing the light source is being rendered and MSAA
will only affect pixels that are contained within the bounds of the light
source. If anti-aliasing is required in the deferred shading pipeline, an-
other anti-aliasing technique such as Fast Approximate Anti-Aliasing (FXAA)
(Lottes, 2009) must be used. FXAA requires an additional post-process pass
which may not be feasible in some applications.

Tiled Forward Shading (Olsson and Assarsson, 2011), also known as For-
ward+ (Harada, McKee, and Yang, 2012; McKee, 2012), is a rendering tech-
nique that divides the screen into a grid of uniform tiles. In an initial pass,
the active lights in the scene are sorted into the screen space tiles. In the
shading pass, only the lights that are contained in the same screen space
tile as the shaded fragment need to be considered in the lighting calcula-
tions. This technique can be further optimized by using the depth buffer to
compute the minimum and maximum depth bounds within the tile. Any
light that is not contained within the frustum formed by the tile edges and
the minimum and maximum depth planes can be discarded.

Tiled Forward Shading allows for many more dynamic lights in the scene
compared to forward and Deferred Shading but it is not without drawbacks.

4 Chapter 1. Introduction

FIGURE 1.2: Tiled Forward Shading: Scene lit with 10,000
dynamic lights (left), light heatmap: blue: 1 - 10, green: 10 -

30, yellow: 30 - 40, orange: 40 - 50, red: 50+ lights (right).

Taking the minimum and maximum depth bounds to form the tile frustum
is a reasonable optimization when rendering opaque geometry but cannot
be applied when rendering transparent objects. The reason for this is that
transparent geometry cannot be rendered during the depth pre-pass and
therefore cannot be used to constrain the tile frustum. The solution to this
problem is to build two light lists, one that can be used while rendering
opaque geometry, and another that is used while rendering transparent ge-
ometry.

Another disadvantage of Tiled Forward Shading is that tiles which have
a large depth disparity (minimum and maximum depth values within the
tile are far apart) will result in a large tile frustum and may include lights
that do not contribute to the final shading of the fragment (false positives).
Harada (Harada, 2012) suggests splitting the tile frustum into multiple sec-
tions along the depth of the tile and disregarding lights that only intersect
with empty sections. Harada is able to show that this technique was ef-
fective at reducing the false positives in the case of tiles with a large depth
disparity. However, the added complexity in the light culling stage resulted
in a 10% overhead of the entire technique.

The light culling algorithm in Tiled Forward Shading uses a frustum that
is created from the tile edges and the minimum and maximum depth val-
ues in the tile. Frustum culling is inherently inaccurate because it relies on
performing plane-intersection tests with the geometry of the light volume.
Only light volumes that are fully contained in the negative half-space of the
plane can be disregarded. This technique to perform light culling results in
many tiles accepting the light when it should be disregarded as can be seen
in Figure 1.3.

Figure 1.3 shows the outline of a point light as a red circle. The blue tiles
represent tiles that have determined that the light is covering the tile. The
tiles that are fully (or partially) contained within the red circle are correctly
detecting the light is contained in the tile (true positives). The tiles that are
fully outside of the red circle are incorrectly detecting the light is contained
within that tile (false positives). This occurs because there is no single plane
in the frustum of the tile that can reject the light.

The false positives resulting from the frustum culling technique could
possibly be reduced using the Separating Axis Theorem (SAT) (dyn4j, 2017)
but this was not explored in the context of this thesis.

In a previous study (Oosten, 2015) it was shown that although the Tiled

1.1. Motivation 5

FIGURE 1.3: Culling a point-light against the tile frustum re-
sults in false positives. The blue tiles outside of the red circle

are incorrectly including the point light (Oosten, 2015).

Forward Shading technique outperformed both the Forward and Deferred Shad-
ing techniques, the primary bottleneck of Tiled Forward Shading was the light
culling stage. That study showed that the light culling stage of the Tiled For-
ward Shading technique had a O(n2) runtime complexity which limits the
number of lights that could be present in the scene.

In this thesis we introduce Volume Tiled Forward Shading. Volume Tiled
Forward Shading is similar to Tiled Forward Shading but instead of using a 2D
grid of uniform tiles in screen space, a 3D grid of volume tiles is constructed
in view space. A single volume tile covers a uniform size in screen space,
but the size of volume tiles further away from the viewer increase logarith-
mically to maintain self-similar dimensions, that is, volume tiles maintain a
cubic shape regardless of their distance from the view plane.

In this thesis we will show that Volume Tiled Forward Shading performs
better than Tiled Forward Shading in the average case. Unlike Deferred Shad-
ing, Volume Tiled Forward Shading has support for multiple lighting models
and MSAA is also natively supported. Unlike Tiled Forward Shading, Volume
Tiled Forward Shading supports both opaque and transparent objects with a
single light list. Because Volume Tiled Forward Shading uses Axis-Aligned
Bounding Boxes (AABB) to define a volume tile, the light culling stage of
the volume tiled forward shading technique produces less false positives
than Tiled Forward Shading when using frustum culling.

We also introduce an optimization to the Volume Tiled Forward Shading
technique that reduces the runtime complexity of the light culling stage to
O(log32 n) allowing for a virtually unlimited number of lights to be active

6 Chapter 1. Introduction

in the scene.

1.2 Research Question

In this thesis, we will attempt to answer the following question:
"Can the performance of Tiled Forward Shading be improved by using

Volume Tiled Forward Shading?"
To answer this question, we will present an experiment that demon-

strates both Tiled Forward Shading and Volume Tiled Forward Shading. We
will show that on average, Volume Tiled Forward Shading performs better
than Tiled Forward Shading. We will also present a technique that sorts the
light sources into a Bounding Volume Hierarchy (BVH) before the light culling
stage, allowing for millions of light sources to be active in the scene while
still providing "real-time" frame rates. In the context of this thesis, anything
higher than 30 Frames Per Second (FPS) is considered "real-time".

7

Chapter 2

Background

2.1 Previous Work

Several rendering techniques have been developed in the past which con-
tribute to the Volume Tiled Forward Shading technique described in this the-
sis. Forward Rendering was traditionally one of the most pervasive tech-
niques applied in fixed-function (non-programmable) dedicated GPU hard-
ware. Forward Rendering applies both rasterization and shading in a sin-
gle pass through the rendering pipeline. Deferred Shading is a rendering
technique that decouples the rasterization and shading passes to minimize
redundant lighting computations. Tiled Forward Shading sorts lights into
screen space tiles in order to minimize the number of lights that needs
to be considered during shading. Clustered Shading extends upon the 2D
screen space tiles of Tiled Forward Shading and divides the 2D tiles along
the view-space depth into 3D clusters.

Forward Rendering is a traditional rendering technique that was gen-
erally implemented in fixed-function dedicated graphics processors. Al-
though currently less pervasive on desktop applications, Forward Render-
ing is still commonly used in mobile applications (Olsson, 2015). Forward
Rendering works by rasterizing and shading each geometric object in the
scene in a single pass. Each shaded pixel considers the lighting contribu-
tion of every light in the scene even if the contribution of that light to the
final color of the pixel is negligible.

The steps of the per-pixel Forward Rendering technique are shown in Al-
gorithm 2.1.

8 Chapter 2. Background

Algorithm 2.1 Forward Rendering.

Require: G is a list of geometric objects.
Require: L is a list of lights.
Require: S is a framebuffer that stores the final rendered image.

1: function FORWARDRENDERING(G,L)
2: for g in G do
3: F ← RASTERIZE(g)
4: for f in F do
5: c← 0
6: for l in L do
7: c← c+ COMPUTELIGHTING(l, f)
8: end for
9: S[f]← c

10: end for
11: end for
12: end function

The Forward Rendering pseudo-code shown in Algorithm 2.1 shows an
extremely simplified version of how the GPU generates the rendered image.
The Rasterize function on line 3 generates a list of fragments that must be
shaded for a given geometric object. The ComputeLighting function on line
7 applies the lighting function for light l and visible fragment f .

It is easy to see that this technique contains a triple-nested loop with run
time complexity of O(gfl) where g is the number of geometric objects that
need to be rendered, f is the number of visible fragments, and l is the num-
ber of lights that contribute to the final shading of the object. Clearly this is
not an ideal technique for performing high-resolution rendering of scenes
that contain many geometric objects and many lights. There are several
obvious optimizations that can be applied to this technique:

1. Reduce the number of geometric objects

2. Reduce the number of visible fragments

3. Reduce the number of lights

Reducing the number of geometric objects that need to be rendered can
be achieved by implementing geometric culling techniques such as back-
face culling or camera frustum culling (Clark, 1976). More advanced occlu-
sion culling techniques exist such as z-buffer optimization techniques (Cat-
mull, 1974) and hierarchical occlusion maps (Zhang et al., 1997). Occlusion
culling techniques will not be discussed in the context of this thesis.

Reducing the number of visible fragments that need to be shaded is
achieved by reducing (or eliminating) overdraw. Overdraw occurs when a
previously shaded fragment in the color buffer is replaced by a fragment
that appears in-front, but is rendered after the previous fragment. Sorting
geometric objects based on their distance to the camera can help to reduce
overdraw if the objects are sorted from nearest to farthest from the camera.
If geometric objects are sorted before rendering then z-buffer optimizations
can be applied which help to reduce the number of redundantly shaded
fragments.

2.1. Previous Work 9

Reducing the number of lights can be achieved by determining exactly
which lights will effect the shaded fragment before shading actually takes
place. If an assumption can be made about the contribution of the light
based on the distance the light is to the point being shaded then lights that
are sufficiently far away can be disregarded during shading. This can be
achieved by assigning a maximum range to the light. Lights that are far-
ther away from the point being shaded than the maximum range will not
contribute to the final color of the fragment and do not need to be consid-
ered during shading.

Deferred Shading is a rendering technique that focuses on reducing both
the number of visible fragments that must be shaded and reducing the
number of lights that contribute to the final color of the light. Deferred
Shading is a two-pass technique that works by first rasterizing each of the
geometric objects in the scene into a set of 2D image buffers. These buffers
are used to store the geometric information that is required to perform
the lighting calculations in a later pass. The image buffers that store the
geometric information is commonly referred to as Geometric Buffers (G-
Buffers). Each G-buffer contains a single geometric property (such as color,
depth, or surface normal) (Saito and Takahashi, 1990). The G-buffers are
then used in the shading pass to compute the final lighting contribution.

In the second pass of the Deferred Shading technique, geometric vol-
umes that represent the light sources in the scene are rasterized. Point lights
are represented by spheres, spot lights as cones, and directional lights as
full-screen quads (Hargreaves and Harris, 2004). Only the visible fragments
that are contained within the light volumes are shaded by the light. The
depth buffer from the geometric pass is used to determine which fragments
are contained in the light volume and the geometric information stored in
the G-buffers is used to compute the final shading for the light source.

Tiled Forward Shading is a rendering technique that focuses on reducing
the number of lights that must be considered during shading. It achieves
this by first assigning the lights in the scene to the cells of a uniform 2D
grid that is defined in screen space. During shading, only the lights that
are contained within the grid cell of the currenlty shaded fragment must be
considered (Olsson and Assarsson, 2011).

Clustered Shading is a rendering technique developed by Ola Olsson,
Markus Billeter, and Ulf Assarsson (Olsson, Billeter, and Assarsson, 2012).
Clustered Shading extends Tiled Forward Shading into three-dimensional
space by dividing the 2D screen-space tiles into 3D clusters. Clustered
Shading improves on Tiled Forward Shading by reducing false positives
caused by large depth discontinuities in tiles containing geometric bound-
aries. Clustered Shading uses a 2D image buffer to store the cluster keys
which restricts the algorithm to opaque geometry. A method to apply clus-
tered shading to transparent geometry is not described in their paper.

2.1.1 Forward Rendering

Forward Rendering is the traditional rendering technique that is most com-
monly used in dedicated fixed-function rendering hardware. Forward Ren-
dering works by rendering each geometric object in the scene and shading
each visible fragment by computing the lighting contributions of all lights
in the scene. At the most basic level, Forward Rendering makes no attempt

10 Chapter 2. Background

to eliminate lights in the scene that provide negligible contribution to the
final color of the pixels.

FIGURE 2.1: Forward shading considers all lights to shade
every geometric object in the scene.

Although trivial to implement, Forward Rendering is not well suited for
performing high-resolution rendering of scenes that contain many geomet-
ric objects and many lights. Since the introduction of the programmable
shader pipeline, it is possible to implement a wide variety of rendering
techniques that perform better than Forward Rendering under certain con-
ditions. Deferred Shading, Tile Forward Shading, and Clustered Shading
are a few of the techniques that perform better than traditional Forward
Rendering when rendering scenes with many geometric objects and many
lights. These techniques will be described in the next sections.

2.1.2 Deferred Shading

Deferred Shading is a rendering technique that decouples geometric raster-
ization and shading into separate passes (Deering et al., 1988; Hargreaves
and Harris, 2004). In the first pass of the Deferred Shading technique, geo-
metric attributes of the objects in the scene are rasterized into several full-
screen textures called the Geometry Buffers or G-Buffers (Saito and Takahashi,
1990). In the second pass, volumes that represent the lights in the scene are
rasterized. The geometric attributes are read from the G-Buffers in order to
compute the final lighting contribution.

2.1. Previous Work 11

FIGURE 2.2: Deferred shading operates in two passes: Ge-
ometry pass and the lighting pass.

Geometry Pass

In the first pass of the Deferred Shading technique the G-buffers are gener-
ated. Any type of geometric information can be stored in the G-buffers but
the most common attributes to store in the G-buffers are (Hargreaves and
Harris, 2004; Shishkovtsov, 2006; Leeuw, 2007):

1. Depth/Stencil

2. Ambient & Emissive (Light Accumulation)

3. Normals

4. Specular

5. Diffuse

The Depth/Stencil buffer is most commonly stored as a 32 bit per pixel
texture format where 24 bit are used to store the depth and 8 bit are used to
store the stencil value. The position of the fragment can be reconstructed

12 Chapter 2. Background

in the lighting pass from the depth value and the x and y screen position of
the current fragment.

FIGURE 2.3: The output of the depth/stencil buffer (Oosten,
2015).

The Light Accumulation buffer stores the ambient and emissive contribu-
tions of the geometry. The Light Accumulation buffer is generally stored
as a 32 bit per pixel texture where 8 bit are used to represent the red, green,
and blue channels. The alpha channel can be used to store either the specu-
lar intensity (Hargreaves and Harris, 2004) or the luminance (Leeuw, 2007).

FIGURE 2.4: The output of the light accumulation buffer.
The image has been brightened to improve visibility

(Oosten, 2015).

The Normal buffer stores the surface normals for the geometry in view
space. The normal buffer is usually compressed into a 32 bit where the

2.1. Previous Work 13

x and y components of the view space normal are compressed into 16 bit
floating-point values. The z component of the view space normal is recom-
puted in the lighting pass using Equation 2.1 (Hargreaves and Harris, 2004;
Leeuw, 2007).

z =
√

1− x2 − y2 (2.1)

FIGURE 2.5: The Normal buffer stores the view space nor-
mal of the geometry. In this image, all three normal compo-

nents are visualized (Oosten, 2015).

The Specular buffer stores the specular color and specular power. The
specular color is stored in the red, green, and blue channels and the specular
power is converted in the range [0 · · · 1] using Equation 2.2 and stored in the
alpha channel as an 8 bit unsigned normalized value (Leeuw, 2007).

α′ =
log2(α)

10.5
(2.2)

14 Chapter 2. Background

FIGURE 2.6: The speuclar buffer stores the specular color
and specular power (Oosten, 2015).

The Diffuse lighting buffer stores the diffuse contribution of the geom-
etry. The diffuse buffer is usually stored as a 32 bit per pixel buffer where
each the red, green, and blue channels are 8 bit each. The alpha channel
can be used for other purposes. In some cases it is used to store the pre-
rendered static sun shadows (Leeuw, 2007) or is left completely unused
(Hargreaves and Harris, 2004).

FIGURE 2.7: The diffuse buffer stores the diffuse contribu-
tion (Oosten, 2015).

Lighting Pass

The Lighting pass is the second pass of the Deferred Shading technique. In
the Lighting pass geometric volumes that represent the lights in the scene

2.1. Previous Work 15

are rasterized. The attributes that were written to the G-Buffers in the Ge-
ometry pass are used as inputs to compute the final lighting contribution of
the pixels.

In order to determine which fragments are affected by the lights, the vol-
ume that represents the light source is rasterized; spheres for point lights,
cones for spot lights, and full-screen quadrilaterals for directional lights.
Fragments that are contained within the volume of the light are shaded by
the light source. According to Michiel van der Leeuw (Leeuw, 2007) the
phases required to shade the lit pixels are:

• For each light

– Find and mark visible lit pixels

– Shade lit pixels and add to framebuffer

To find the visible lit pixels, fragments that are in front of the far light
boundary of the light volume are marked in the stencil buffer. This is illus-
trated in Figure 2.8.

FIGURE 2.8: Mark pixels in front of the far light boundary.

Then the front faces of the light volume are rendered and any fragments
that are behind the near light boundary and have been marked in the pre-
vious step are lit.

FIGURE 2.9: Find pixels inside the light volume and com-
pute shading.

16 Chapter 2. Background

To compute the final shading of the pixels, the attributes contained in
the G-Buffers are read and unpacked and the final lighting contribution is
added to the Light Accumulation buffer using additive blending.

2.1.3 Tiled Forward Shading

Tiled Forward Shading (Olsson and Assarsson, 2011) works by dividing the
screen into a uniform grid of tiles. The size of a tile is chosen in order to
balance the trade off between memory usage and computational efficiency.
Small tiles (8x8 pixels) will result in many screen space tiles, increasing
the memory footprint, but reduces false positives at geometric boundaries.
Large tiles (32x32 pixels) reduces the number screen space tiles, decreas-
ing the memory footprint, but results in more false positives at geometric
boundaries.

Tiled Forward Shading consists primarily of these passes:

1. Cull lights

2. Shade samples

Cull Lights

The light culling pass of the Tiled Forward Shading technique uses a uni-
form grid of tiles to assign each active scene light to tiles in the grid. This
pass is usually executed using a compute shader which is invoked with one
thread group for each tile in the grid. The size of the thread group is based
on the size of the tile. For example, 8x8 tiles will result in 8x8 thread groups
(64 threads per thread group), 16x16 tiles will result in 16x16 thread groups
(256 threads per thread group), and 32x32 tiles will result in 32x32 thread
groups (1,024 threads per group).

The frustum for the current tile can either be precomputed in an ini-
tialization phase or recomputed in the light culling pass. The view space
frustum of the tile is used to perform light culling for the tile. The frustum
for a tile in the light grid is visualized in Figure 2.10.

FIGURE 2.10: The view space frustum for a tile (Oosten,
2015).

2.1. Previous Work 17

The frustum for the tile is computed from the tile’s screen space corners
and the camera’s near and far clipping plane. The tile’s frustum is used to
cull all of the active lights in the scene. If the light intersects the frustum for
the tile, its index is added to a local light index list for the thread group.

Once all the lights in the scene have been culled against the view space
frustum of the tile, the local light index list is copied to the global light
index list. Each tile needs to store both the offset in the global light index
list and the number of lights overlapping the tile. The offset and light counts
for the tiles are stored in a 2D texture called the light grid where each texel
corresponds to a tile in the grid. Figure 2.12 shows the data structures that
are used to define which lights overlap the tiles.

FIGURE 2.11: Lights overlapping tiles in the tile grid.

The pseudo code for the light culling algorithm is shown in Algorithm 2.2.

18 Chapter 2. Background

FIGURE 2.12: The data structures that are used to store the
per tile light lists. The Light Grid stores the offset and the
number of lights in the global Light Index List for each tile.

Algorithm 2.2 Cull lights algorithm

Require: L is a list of n lights.
Require: C is the current index in the global light index list.
Require: I is the global light index list.
Require: G is the 2D grid storing the index and light count into the global

light index list.
Require: tid is the 2D index of the current thread within the dispatch.
Require: B is the 2D size of a tile.
Ensure: G is updated with the offset and light count of the current tile.

1: function CULLLIGHTS(tid)
2: t←

⌈
tid
B

⌉
3: i← {0}
4: f ← FRUSTUM(t)
5: for l in L do
6: if CULL(l, f) then
7: APPENDLIGHT(l, i)
8: end if
9: end for

10: c← ATOMICINC(C, i.count)
11: G(t)← (c, i.count)
12: I(c)← i
13: end function

2.1. Previous Work 19

The Frustum function on line 4 of Algorithm 2.2 retrieves the frustum
for tile at index t. The tile frustum can either be computed on-the-fly or re-
trieved from list of precomputed frusta. The Cull function on line 6 checks
to see if the light l is contained within the tile frustum f . This function re-
turns true if the light l is contained within the frustum f . The AppendLight
function on line 7 appends the light l to the local light index list i. The Atom-
icInc function increments the global light counter C based on the number of
lights that have been appended to the local light index list i.

Shade Samples

After the light culling pass is finished, the pixel shader takes the resulting
light grid and the light index list to determine which lights affect the ge-
ometry inside each tile. The lighting models used by a traditional Forward
Rendering technique can be applied without modification to the Tiled For-
ward Shading technique. The only difference in Tiled Forward Shading is
that the light grid stores the offset and light counts into the global light
index list. This means that only lights overlapping the current pixel’s tile
need to be considered during the lighting computation.

Depth Prepass

In the Tiled Forward Shading technique described by Olsson and Assarsson
(Olsson and Assarsson, 2011), a depth pre-pass is an optional optimization
pass which is executed before the Cull Lights pass. The depth information
of the current frame can be used to constrain the clipping planes of the tile’s
view space frustum during light culling. The maximum depth value in the
tile is used to define the far clipping plane and the minimum depth value
in the tile is used to define the near clipping plane for the tile’s view space
frustum.

20 Chapter 2. Background

FIGURE 2.13: The blue objects in the image represent
opaque scene objects. The yellow spheres represent light
sources, and the gray shanded areas represent the depth
range of the tile’s view space frustum. Light 1 is incorrecty
included in the frustum for Object 1 because the object par-
tially covers the first tile creating a depth discontinuity in

the tile (Oosten, 2015).

If the light grid was constructed without the depth pre-pass optimiza-
tion then the same light index list and light grid can be used for both opaque
and transparent geometry. Without the depth pre-pass optimization, many
lights which may not effect the lighting result of the shaded pixels will be
included in the light index list. False positives are not ideal and should be
avoided. One way to avoid redundant lights in the light grid for opaque
geometry is to construct two light grids, one for shading opaque geome-
try and another for shading transparent geometry. It is trivial to adapt the
light culling algorithm shown in Algorithm 2.2 to account for transparent
geometry. The light is first culled by the frustum whose far clipping plane
is at the maximum depth value in the tile and the near clipping plane is
at the position of the camera’s near clipping plane. If the light is contained
within the first frustum, it is added to the light list for transparent geometry.
The frustum is further constrained to the minimum and maximum depth
values within the tile and culled again. If the light is contained within the
second frustum, it is added to the light list for opaque geometry. Figure 2.14
shows the depth bounds used to construct the tile frustums for opaque and
transparent geometry.

2.1. Previous Work 21

FIGURE 2.14: The culling frusutm for opaque geometry can
be derived from the minimum and maximum depth bounds
within the tile (left). The culling frustum for transparent
geometry uses the maximum depth value and the camera’s

near clipping plane (right).(Oosten, 2015).

2.1.4 Clustered Shading

Clustered Shading is a rendering technique that is similar to Tiled Shading
that divides the 2D screen tiles into 3D clusters (Olsson, Billeter, and As-
sarsson, 2012). Clustered Shading consists of the following passes:

1. Cluster assignment

2. Find unique clusters

3. Assign lights to clusters

4. Shade samples

Cluster Assignment

In the context of Clustered Shading, a cluster is is a grouping of view sam-
ples. In Olsson et al.’s paper, samples are clustered based on the position
and quantized normal of the sample. The sample position and normal are
chosen for clustering because these attributes will most likely result in clus-
ters that will be affected by the same set of lights.

A cluster key for each sample is computed by quantizing the sample’s
position in view space. The cluster grid uses a uniform subdivision in the
width and height of the screen and an exponential subdivision in the depth.
An exponential subdivision in the depth is chosen so that clusters remain
as cubic as possible within the grid. Figure 2.15 shows an example of the
exponential spacing used for the cluster subdivision.

The cluster key for a sample is an (i, j, k) tuple that is computed from
the sample’s screen-space coordinates (xss, yss) and the view space depth
zvs. For example, for clusters with a screen space tile size of (tx, ty), (i, j) =
(bxss/txc, byss/tyc).

22 Chapter 2. Background

FIGURE 2.15: The cluster grid uses exponential spacing in
the depth in order to keep the clusters as cubic as possible.

For a given field of view of 2θ and a number of subdivisions in the Y
direction (Sy), k is computed using the following equation:

k =

 log (−zvs/near)
log
(
1 + 2θ

Sy

)
 (2.3)

Six bits in the cluster key are used to encode the quantized normal di-
rection of the sample. The normals are quantized by mapping the direction
of the normal to a cell of a 3D grid (3×3×6 = 54) mapped over a cube. Fig-
ure 2.16 shows a example of quantizing the normal on the cube. According
to Olsson et al., clustering the normals improves light culling.

The cluster key is packed into a 32-bit integer. Eight bits are used for
each of the i and j components. Eight bits is sufficient for a 8192 × 8192
screen buffer (assuming a tile size of 32 × 32 pixels). Ten bits are used to
store the k component, and the last six bits are used to store the quantized
normals. Figure 2.17 shows the per-component mapping to the cluster key.
The cluster keys for each sample are written to a 2D screen space texture.

Find Unique Clusters

The next step of the Clustered Shading technique is to find the unique clus-
ters in the cluster key buffer. Since many samples can be grouped into the
same cluster, it is necessary to find only the unique clusters that are needed
to perform the light assignment step. Unique clusters are identified by first

2.1. Previous Work 23

FIGURE 2.16: Normals are quantized to a 2D grid mapped
over a cube (Olsson, Billeter, and Assarsson, 2012).

FIGURE 2.17: Cluster Key: 32-bits are used to encode the
cluster key. 8 bits for the i and j components each, 10 bits
for the k component, and 6 bits for the quantized normal.

sorting the cluster ID’s within the screen space tiles. A parallel compaction
algorithm is then run over the sorted cluster keys to identify the unique
clusters. Figure 2.18 shows an example of the sorting and compaction of
the cluster key buffer.

Assign Lights

To perform the light assignment step, a BVH is built over the light sources
in the scene. The BVH is built by first sorting the light sources according to
their Z-order (Morton Code) in the scene. The Z-order of the light source
is determined by the descretized center position of the light source. The
lowest level of the BVH is constructed by grouping 32 lights from the sorted
list to form the leaf nodes of the BVH. This process is repeated to form the
upper levels of the BVH until only a single root node remains.

For each unique cluster, the BVH is traversed testing the cluster’s AABB
against the AABB of the nodes of the BVH. At the leaf nodes, the bounding
sphere of the light sources are used to test against the cluster’s AABB. If the
normals are available for the clusters, this is further used to reject the light
if it will not effect any samples in the cluster.

Shade Samples

During shading, the cluster index is retrieved for each pixel being shaded,
the light list for the cluster is retrieved and the sample is shaded normally
similar to the shading pass of the standard forward rendering technique.

24 Chapter 2. Background

FIGURE 2.18: Unique Clusters: the cluster key buffer is
sorted and compacted to find the unique clusters.

2.2 Summary

Forward Rendering rasterizes and shades geometric scene objects in a single
pass through the rendering pipeline. Forward Rendering can be optimized ei-
ther by minimizing the number of geometric objects that must be rendered,
reducing the number of fragments that must be shaded, or by reducing the
number of lighting calculations that must be performed.

Deferred Shading minimizes both the number of fragments that must be
shaded and the number of lights that effect the screen pixels. Deferred Shad-
ing accomplishes this by decoupling the rasterization of geometry and com-
puting the lighting into different passes. Geometric information is written
to the G-Buffers in the Geometry pass. In the lighting pass, the light vol-
umes are rasterized and the geometric attributes stored in the G-buffers are
used to compute the final lighting contribution for the pixels contained in
the light volume. Because Deferred Shading uses 2D screen space buffers
to store the geometric attributes, it is not possible to support transparent
materials.

Tiled Forward Shading first assigns the lights to 2D screen space tiles be-
fore rendering the scene geometry. During shading, the light lists are read
from the light grid and only the lights that are overlapping with the tile for
the current pixel need to be considered for lighting. Tiled Forward Shading
suffers from false positives during the light assignment phase due to large
depth disparities at geometric boundaries within a tile.

Clustered Shading improves upon Tiled Forward Shading because false
positives resulting from large depth disparities at geometric boundaries
within a tile are reduced but similar to Deferred Shading, Clustered Shad-
ing does not provide a solution for rendering transparent objects. Clustered
Shading uses a 2D screen buffer for storing the per-pixel cluster keys. Since
only a single cluster key can be stored for each screen pixel, transparent
objects cannot be represented in this buffer.

2.2. Summary 25

Before the implementation of the Volume Tiled Forward Shading tech-
nique is described, it is important to provide a brief description of modern
GPU architecture. The justifications for the choices that were made during
the implementation of the Volume Tiled Forward Rendering technique require
a basic understanding of how the GPU stores and transfers data, and how
a program is executed on the GPU. In the next chapter, a brief survey of
modern graphics hardware is provided.

27

Chapter 3

GPU Architecture

3.1 Introduction

In order to justify the choices that were made during the implementation of
the Volume Tiled Forward Rendering technique, it is important to have a basic
understanding of modern GPU architecture. This chapter provides a brief
description of the high-level constructs that are available to the GPU pro-
grammer. These constructs include a dispatch, thread group, warp, and thread.
A dispatch describes the execution domain for a compute shader program.
The dispatch is further subdivided into thread groups. A thread group repre-
sents an autonomous collection of work that is capable of sharing memory
and performing syncronization within the dispatch. A warp represents the
maximum amount of work that can be executed in synchronized lock-step.
In the context of an nVidia GPU a warp consists of 32 work units (NVIDIA,
2016a) and in the context of an AMD GPU a SIMD unit consists of 16 work
units (AMD, 2012). A thread is considered the smallest level of execution in
the context of a dispatch. A thread represents a single unit of work and pro-
duces an individual result. The remainder of this paper will be primarily
concerned with the architecture of a modern NVidia GPU. The exact model
of the GPU will be discussed in the performance and analysis chapter of
this paper.

It is also important to understand optimized memory access patterns
in order to comprehend the choices that were made during the develop-
ment of the Volume Tiled Forward Rendering technique. Two optimization
concepts are discussed in this chapter: coalesced access to global memory,
and avoiding shared memory bank conflicts. Coalesced reads and writes
to global memory ensures minimal transactions to global memory. Avoid-
ing shared memory bank conflicts also improves memory throughput for
shared memory. Adhering to these memory optimization practices ensures
maximum memory throughput and improves overall performance of the
GPU application.

3.2 Thread Dispatch

Work is executed on the GPU by issuing a dispatch. A dispatch consists
of a number of thread groups. The dispatch must be executed with enough
thread groups to compute the results for the problem domain. Each thread
group consists of a number of threads. The number of threads in a thread
group must be carefully chosen to make optimal use of the resources avail-
able to the Streaming Multiprocessor (SM). The SM is the processing unit that
executes a thread group on the GPU. The SM executes 32 threads from the

28 Chapter 3. GPU Architecture

thread group, called a warp, in synchronous lock-step. Figure 3.1 shows a
theoretical example of the layout of a dispatch. The image shows an exam-
ple of a two-dimensional dispatch but the dispatch can be either one, two,
or three-dimensional.

FIGURE 3.1: The dispatch consists of thread groups. Each
thread group consists of a number of threads. This image
shows a two-dimensional dispatch but the dispatch can be

either one, two, or three-dimensional.

nVidia’s Pascal GPU architecture (GP104) has 20 SM’s, each SM contains
128 CUDA cores and 96 kB of shared memory (NVIDIA, 2016b). Each SM
can schedule 4 thread groups at a time. Each thread group has access to
a minimum of 16 kB of shared memory but to maintain maximum occu-
pancy, one must be careful not to exceed 1/4 of the maximum amount of
shared memory available to the SM per thread group (24 kB on Pascal GPU
architecture). When designing the compute shader, for portability reasons,
it is important not to exceed 16 kB of shared memory per thread group.
If a thread group exceeds 1/4 of the available shared memory, the thread
scheduler will reduce the number of simultaneous thread groups until the
requested shared memory per thread group can be achieved. Exceeding 1/4
of the maximum amount of shared memory per thread group will result in
reduced thread occupancy and the GPU will not be fully utilized.

3.3. Coalesced Access to Global Memory 29

FIGURE 3.2: Pascal GP104 Streaming Multiprocessor archi-
tecture.

3.3 Coalesced Access to Global Memory

In order to optimize memory throughput, accesses to global memory should
be coalesced within a warp. Coalesced memory access reduces the number
of fetches required for a warp.

Global memory is accessed via 32B, 64B, or 128B memory segments.
The size of the memory segment is dependent on the size of the word ac-
cessed by each thread in a warp.

1. 32B for 1B words (8 bit values)

2. 64B for 2B words (16 bit values)

30 Chapter 3. GPU Architecture

3. 128B for 4B, 8B, and 16B words (32 bit, 64 bit, and 128 bit values)

FIGURE 3.3: Global memory segments are 32B for 1B
words, 64B for 2B words, and 128B for 4 , 8 , and 16B

words.

Coalescing will occur when the kth thread in a warp accesses the kth

word in a memory segment. If each thread in the warp sequentially accesses
a 1B value from global memory, this will result a single memory transac-
tion of 32-bytes. If each thread in the warp accesses a 16B (4-component
floating-point) value from global memory, this will result in 4 128B mem-
ory transactions (one for each quarter-warp)(NVIDIA, 2016a).

See Figure 3.4 for an example of each thread in a warp accessing a 16B
word from global memory.

FIGURE 3.4: Each thread in a warp accesses a 16B (4-
component floating-point value) from global memory. This

will result in 4 128B memory transactions.

If memory access is misaligned or straddles a 128B memory segment,
then more memory transactions will be required to fulfil the request.

3.4 Avoid Bank Conflicts

When designing a GPU compute algorithm, it is important to be aware of
how shared memory is accessed when a load or store operation is executed.
Shared memory is stored in 32 banks of 32 bit words. Consecutive 32 bit
words are interleved across the memory banks. If multiple threads in a
warp access different 32 bit addresses that map to the same bank of shared
memory, a bank conflict will occur and memory accesses will be serialized
(Figure 3.5). If every thread in a warp accesses the same 32 bit address
that maps to a single bank then the result will be broadcast to all threads
in the warp (Figure 3.6). If every thread in a warp reads from a different

3.4. Avoid Bank Conflicts 31

memory bank then no bank conflict occurs and all reads can be performed
simultaneously (Figure 3.7) (Oosten, 2011; NVIDIA, 2016c).

FIGURE 3.5: The shared memory is accessed by each thread
with a stride of two. In this case, a 2-way bank conflict oc-
curs. This will result in 2 serialized reads from shared mem-

ory.
.

FIGURE 3.6: If every thread in a warp accesses the same ad-
dress of a shared memory bank then the value is broadcast
to all threads. In this case, no bank conflict occurs and all

reads can be performed simutaniously (Oosten, 2011).
.

32 Chapter 3. GPU Architecture

FIGURE 3.7: This image shows an example of linear ad-
dressing. If each thread in a warp accesses a different shared

memory bank, then no bank conflict occurs.
.

33

Chapter 4

Parallel Primitives

4.1 Introduction

Parallel primitives form the building blocks for implementing parallel algo-
rithms such as radix and merge sorting, determining minimum and max-
imum values, summing a set of values, to name just a few. This chapter
describes two such parallel primitives: a reduction and a scan.

Reduction is a parallel primitive that reduces a set of n values to a single
value by applying a binary associative operator⊕ over the set. For example,
a sum is an example of an operation that can be implemented as a reduction.

Scan is another parallel primitive that takes a set of n values [a0, a1, · · · , an−1]
and applies the binary associative operator ⊕ to produce the set [a0, (a0 ⊕
a1), · · · , (a0⊕a1⊕· · ·⊕an−1)] in the case of an inclusive scan or [i⊕, a0, (a0⊕
a1), · · · , (a0⊕a1⊕· · ·⊕an−2)] in the case of an exclusive scan where i⊕ is the
identity of the set such that it does not effect the result of any value in the
set when the ⊕ operator is applied. For example, i⊕ is a 0 for addition and
a 1 for multiplication (Blelloch, 1989; Wilt, 2013).

4.2 Reduction

A parallel reduction is a useful building block for various GPU algorithms
such as finding minimum or maximum values in a set, or summing a set of
data in parallel. The parallel reduction technique described here is derived
from The CUDA Handbook (Wilt, 2013) and DirectCompute Optimizations and
Best Practices (Young, 2010).

The parallel reduction technique described here is a 2-pass reduction. In
the first pass, a maximum of p thread groups are dispatched. Each thread
group reduces to a single value that is written to global memory. The max-
imum number of thread groups (p) should be chosen so that only a single
thread group is required to perform the final reduction in the second pass.
The number of threads per thread group (t) should be chosen so that the
reduction can be performed using group shared memory without exceed-
ing group shared memory limits (Section 3.2). The second pass dispatches a
single thread group that reduces the remaining p values into a single value.

The reduction requires two passes because the first pass writes a max-
imum of p values to global memory. Since there are no synchronization
primitives for global memory access within a dispatch, invoking a second
dispatch is the only way to guarantee that all of the thread groups from the
first pass have finished writing their value to global memory.

There are several methods that can be used to implement a reduction
(Wilt, 2013).

34 Chapter 4. Parallel Primitives

1. Serial

2. Pair-wise Log-Step

3. Interleaved Log-Step

In simplified terms, a reduction applies a binary associative operator ⊕
over a data set of n values reducing to a single value.

n∑
i=0

ai = a0 ⊕ a1 ⊕ a2 ⊕ a3 · · · ⊕ an (4.1)

As the name implies, a serial reduction (Figure 4.1) applies the binary
operator to two operands per pass and requires (n − 1) passes to reduce
to a single value. This technique is commonly used when the reduction is
performed on a single thread of execution.

FIGURE 4.1: Serial reduction applied over an array of eight
values.

(((((((a0 ⊕ a1)⊕ a2)⊕ a3)⊕ a4)⊕ a5)⊕ a6)⊕ a7) (4.2)

The pair-wise log-step reduction is performed in O(log2 n) steps. This
method performs poorly on the GPU because when a single thread accesses
adjacent memory locations in global memory, uncoalesced memory trans-
actions will occur. As mentioned in Section 3.3 coalescing will occur when
the kth thread in a warp accesses the kth word in a memory segment. In
this case, the kth thread in a warp is accessing the 2kth word in a memory
segment causing uncoalasced memory transactions to occur.

Pair-wise log-step reduction will also cause 2-way bank conflicts in shared
memory to occur when this access pattern is used.

FIGURE 4.2: Pair-wise log-step reduction. This method
does not make optimal use of memory access patterns in

GPU memory.

4.2. Reduction 35

(((a0 ⊕ a1)⊕ (a2 ⊕ a3))⊕ ((a4 ⊕ a5)⊕ (a6 ⊕ a7))) (4.3)

The log-step reduction algorithm performs best when each thread ac-
cesses global memory by interleaving addresses by a multiple of (t × p)
where t is the number of threads per thread group and p is the number of
thread groups in the dispatch.

The interleaved log-step reduction (Figure 4.3) performs better than the
pair-wise reduction because bank conflicts are avoided when the addresses
are accessed in an interleaved pattern (Figure 4.4).

FIGURE 4.3: Interleaved log-step reduction. Accessing both
global and shared memory is optimized.

(((a0 ⊕ a4)⊕ (a1 ⊕ a5))⊕ ((a2 ⊕ a6)⊕ (a3 ⊕ a7))) (4.4)

FIGURE 4.4: Bank conflicts are avoided when using an in-
terleaved access pattern.

As previously mentioned, the parallel reduction algorithm operates in
two passes. The first pass executes a dispatch of a maximum of p thread
groups. Each thread group consists of t threads. In the first pass, each
thread will reduce n/(t × p) values where n is the number of values to be
reduced. Each thread writes its reduced value to group shared memory.
The reduction continues by halving the number of active threads and re-
ducing the two values at tid and tid + (t/2i) where tid is the thread index

36 Chapter 4. Parallel Primitives

within the thread group, t is the number of threads in the thread group, and
i is the current iteration of the reduction. The reduction step is repeated un-
til bt/2ic < 1. Algorithm 4.1 shows the pseudo code for the interleaved
log-step reduction function.

Algorithm 4.1 Interleaved log-step parallel reduction.

Require: x is a list of n input values in group shared memory.
Require: y stores the result of the reduction in global memory.
Require: gid is the index of the current thread group.
Require: tid is the index of the thread within the thread group.
Require: p is the number of thread groups.
Require: t is the number of threads per thread group.

1: function LOGSTEPREDUCTION(gid,tid,⊕)
2: k ← t/2
3: while k > 0 do
4: if tid < k then
5: x[tid]← x[tid]⊕ x[tid+ k]
6: end if
7: k ← bk/2c
8: end while
9: if tid = 0 then

10: y[gid]← x[tid]
11: end if
12: end function

It is interesting to note that the LogStepReduction function shown in Al-
gorithm 4.1 does not show the group shared memory barrier that is re-
quired to guarantee all threads in a thread group have finished reading or
writing to shared memory. The group shared memory barriers should be
inserted after line 6 in Algorithm 4.1.

The LogStepReduction function shown in Algorithm 4.1 can be optimized
in the case the thread count (k) is less than or equal to the size of a warp.
In this case, when k is 32 or less then the threads in the thread group exe-
cute in warp-synchronise lock-step and group shared memory barriers are
no longer required. According to Young, unrolling the last warp and re-
moving group shared memory barrier results in a 45% increase in perfor-
mance (Young, 2010). Algorithm 4.2 shows the LogStepReduction function
with the warp-synchronous optimization applied. In this case the group
shared memory barrier is added to the algorithm for clarity.

4.3. Scan 37

Algorithm 4.2 Interleaved log-step parallel reduction with warp-
synchronous optimization.

Require: x is a list of n values in group shared memory.
Require: y stores the result of the reduction in global memory.
Require: gid is the index of the current thread group.
Require: tid is the index of the thread within the thread group.
Require: p is the number of thread groups.
Require: t is the number of threads per thread group.

1: function LOGSTEPREDUCTION(gid,tid,⊕)
2: k ← t/2
3: while k > 32 do
4: if tid < k then
5: x[tid]← x[tid]⊕ x[tid+ k]
6: end if
7: GROUPSHAREDMEMORYBARRIER

8: k ← bk/2c
9: end while

10: if tid < 32 then
11: while k > 0 do
12: x[tid]← x[tid]⊕ x[tid+ k]
13: k ← bk/2c
14: end while
15: end if
16: if tid = 0 then
17: y[gid]← x[tid]
18: end if
19: end function

The result of the first pass is p values written to global memory, where
p is the number of thread groups dispatched in the first pass. In the second
pass, a single thread group is executed to reduce the final p values from
the first pass. The algorithm for the second pass is identical to that of the
first pass. The only difference between the first and second passes of the
reduction algorithm is the number of resulting values.

4.3 Scan

According to Blelloch, a scan operation takes a binary operator ⊕ with the
identity i⊕ and an ordered set [a0, a1, · · · , an−1] of n elements and returns
the ordered set [i⊕, a0, (a0 ⊕ a1), · · · , (a0 ⊕ a1 ⊕ · · · ⊕ an−2)] where i⊕ is the
identity value for the ⊕ operator (0 for addition and 1 for multiplication)
(Blelloch, 1989).

If the⊕ operator is addition then the scan operation applied to the array

[2, 1, 2, 3, 4, 8, 13, 21] (4.5)

would produce

[0, 2, 3, 5, 8, 12, 20, 33] (4.6)

The pseudo code for a sequential scan is shown in Algorithm 4.3.

38 Chapter 4. Parallel Primitives

Algorithm 4.3 Sequential scan.

Require: x is a list of n values.
Ensure: y contains the result of the scan operation.

1: function SEQUENTIALSCAN(x,i⊕,⊕)
2: y[0]← i⊕
3: for i = 1 to n do
4: y[i]← y[i− 1]⊕ x[i− 1]
5: end for
6: return y
7: end function

The sequential scan algorithm operates inO(n) time in a single thread of
execution. The algorithm can be parallelized to operate in O(log2 n) steps.
For each step i of the parallel scan algorithm, if the thread id (tid) of the
current thread is greater than 2i then the value of x[tid] and x[tid − 2i] is
summed and stores the result at x[tid].

The pseudo code for the parallel scan is shown in Algorithm 4.4. This
algorithm is based on the naive parallel scan operation presented by Mark
Harris, Shubhabrata Sengupta, and John D. Owens in chapter 39 of GPU
Gems 3 (Harris, Sengupta, and Owens, 2008).

Algorithm 4.4 Parallel scan.

Require: x is a list of n values.
Require: I⊕ is the identity.
Require: tid is the ID of the thread in the thread group.
Ensure: y contains the result of the scan operation.

1: function PARALLELSCAN(x,tid,i⊕,⊕)
2: if tid = 0 then
3: y[0]← i⊕
4: else
5: y[tid]← x[tid− 1]
6: end if
7: for i← 0 to log2 n− 1 do
8: t← y[tid]
9: if tid > 2i then

10: t← t⊕ y[tid− 2i]
11: end if
12: y[tid]← t
13: end for
14: return y
15: end function

In the first step, the output array y is primed by copying all of the el-
ements from the input array (x) to the output array (y) shifted one index
to the right. A loop is iterated log2n times and for each thread whose
thread ID is greater than 2i where i is the loop iteration counter, the sum
of y[tid]⊕ y[tid− 2i] is computed and stored at y[tid] where tid is the ID of
the thread in the thread group. Figure 4.5 shows a graphical implementa-
tion of performing the parallel scan over a set of eight values. Each thread
operates on a single index in the set.

4.3. Scan 39

FIGURE 4.5: Parallel scan. For each iteration i of the parallel
scan, each thread t larger than 2i computes x[t] ⊕ x[t − 2i]

and stores the result at index t.

41

Chapter 5

Sorting

5.1 Introduction

Sorting is an important building block for the construction of spatial data
structures such as a Bounding Volume Hierarchies (BVH). As computer archi-
tectures evolve towards an increasingly parallel model, it is becoming pro-
gressively more important to understand parallel algorithm design. This
chapter deals with the problem of sorting using the parallel power of the
GPU. Two sorting algorithms are described; radix sort and merge sort.

Radix sort is a sorting algorithm that sorts a set of integer keys by only
considering a single digit starting at the least significant digit (LSD) and
proceeding to the most significant digit (MSD). Because radix sort is a sta-
ble sort (if two items are equal, their order doesn’t change) the ordering of
the values is guaranteed to be correct after sorting the individual digits.
Radix sort has a runtime complexity of O(wn) where w is the size of the
key (number of significant digits) and n is the number of keys to be sorted.

Merge sort is a sorting algorithm that merges two sorted lists by com-
paring values from each list according to some sort condition. The value
that adheres to the sort condition (less than, less than or equal, greater or
equal, greater) is chosen and inserted into the resulting list. Every itera-
tion of merge sort creates a resulting list that is twice the size of the of the
original lists. To sort a completely random list of n values requires log2 n
iterations and has a runtime complexity of O(n log2 n).

In order to make optimial use of GPU hardware, a hybrid sorting ap-
proach is applied that first uses radix sort to sort chunks of 256 keys from
the input. A parallel merge sort is then used to merge the 256 key chunks to
generate the final sorted list. Limiting the radix sort to 256 keys per chunk
ensures the sorting can be performed entirely in high-speed on-chip shared
memory without exceeding the 16 kB shared memory limit described in
Section 3.2. A parallel merge sort was chosen to sort the resulting chunks
because a very efficient parallel merge sort algorithm exists that minimizes
gather operations from global memory, and evenly partitions the workload
to make optimal use of the GPU hardware (Green, McColl, and Bader, 2012;
Harris, Sengupta, and Owens, 2008).

5.2 Radix Sort

The first pass of the hybrid sorting algorithm uses a radix sort that produces
sorted chunks of 256 keys. Radix sort works by considering a single bit from
the sort key and placing all keys with a 0 in that bit before all keys with a 1.
The algorithm starts at the least-significant bit of the key and the process is

42 Chapter 5. Sorting

FIGURE 5.1: In order to sort the keys, a hybrid sorting
approach is used. The unsorted keys are first sorted into
chunks of 256 keys using a parallel radix sort. A merge sort
is repeatedly applied to the sorted chunks to produce the

final sorted list.

repeated until the most-significant bit. The radix sort algorithm shown here
is based on the algorithm described in Chapter 39 of GPU Gems 3 (Harris,
Sengupta, and Owens, 2008).

FIGURE 5.2: Radix sort loops over the bits of the key start-
ing at the least-significant bit. All keys with a 0 in the bit
are placed before keys with a 1. The process is repeated for

each bit resulting in a sorted list.

The radix sort algorithm uses a parallel scan operation (Section 4.3) in
order to determine the number of sort keys that contain a 0 in the current
bit.

The radix sort algorithm starts by reading the keys from global memory
into shared memory. Performing the radix sort in shared memory ensures
that only a single read and a single write to global memory is performed
per thread.

For the sake of the following algorithm, sort keys with a 1 in the current
bit will be referred to as a true sort key sort keys with a 0 in the current bit

5.2. Radix Sort 43

Algorithm 5.1 Parallel radix sort.

Require: x is an unsorted list of n keys.
Require: numBits is the number of bits of the sort key.
Require: tid is the ID of the thread in the thread group.
Require: e stores a 0 for true sort keys, and a 1 for false sort keys.
Require: f contains the destination index of all false sort keys.
Require: d is the destination index for the keys.
Ensure: y contains the sorted keys.

1: function RADIXSORT(x,tid)
2: for B ← 0 to numBits do
3: b← BITMASK(x[tid],B)
4: if b = 0 then
5: e[tid]← 1
6: else
7: e[tid]← 0
8: end if
9: f ← PARALLELSCAN(e,tid,0,+)

10: totalFalses← e[n− 1] + f [n− 1]
11: t[tid]← tid− f [tid] + totalFalses
12: if b = 1 then
13: d[tid]← t[tid]
14: else
15: d[tid]← f [tid]
16: end if
17: x[tid]← x[d[tid]]
18: end for
19: y[tid]← x[tid]
20: return y
21: end function

will be referred to as a false sort key.
The following steps are then repeated for each bit of the key:

1. Using a temporary array (e) stored in shared memory, write a 1 for all
false sort keys (b = 0) and a 0 for all true sort keys (b = 1).

2. Perform a parallel prefix scan over array e and store the result in an-
other array (f). f now contains the destination index of all false sort
keys.

3. The last element of array e plus the last element of array f contains
the total number of false sort keys. This value is written to a shared
variable called totalFalses.

4. The destination index d for a true sort key at index i is d = i − f [i] +
totalFalses. The destination index d for false sort keys is d = f [i]

5. The original sort keys are written to the keys array in shared memory
according the destination index d and step 1 is repeated for the next
increasing significant bit.

After all of the bits of the sort keys have been processed, the results are
copied to global memory.

44 Chapter 5. Sorting

The pseudo-code for the radix sort is shown in Algorithm 5.1.
Figure 5.3 shows an example of the radix sort algorithm being applied

to the least significant bit of the input.

FIGURE 5.3: The radix sort algorithm applied to the least
significant bit of the input.

After the chunks have been sorted using the radix sort algorithm the
sorting pass continues by performing repeated applications of merge sort
until a final sorted list of keys remains. In the next section the merge sort
algorithm is described.

5.3 Merge Sort

The resulting 256 key chunks from the radix sort need to be merged to pro-
duce the final list of sorted keys. Radix sort is no longer a viable sorting
algorithm because the larger chunks would not fit into group shared mem-
ory requiring more fetches from global memory. The technique used to
merge the chunks is called Merge Path (Green, McColl, and Bader, 2012).

It is necessary to first describe the serial merge function since the parallel
merge uses serial merge to perform the actual merging of the values. The
serial merge function operates on two sorted lists A and B of size |A| and
|B| and produces a third list C of size |C| = |A| + |B|. The merge iterates
over the elements ofA andB copying the smallest value from eitherA orB
intoC. If either of the input lists are exhausted then the remaining elements

5.3. Merge Sort 45

from the other list are copied to C. Algorithm 5.2 shows the pseudo-code
for the serial merge.

Algorithm 5.2 Serial merge sort.

Require: A is a sorted list.
Require: B is a sorted list.
Ensure: C is a sorted list of size |A|+ |B|.

1: function SERIALMERGE(A,B)
2: a← 0
3: b← 0
4: for i← 0 to |A|+ |B| do
5: if a < |A| and A[a] < B[b] or b ≥ |B| then
6: C[i]← A[a]
7: a← a+ 1
8: else
9: C[i]← B[b]

10: b← b+ 1
11: end if
12: end for
13: return C
14: end function

The merge sorting algorithm can be visualized by placing the elements
of list A and B in a grid where the elements of A are placed in the columns
and the elements ofB are placed in the rows of the grid. Then the sequential
merge can be visualized as a path that moves from the top-left corner of the
grid to the bottom-right corner of the grid. The path moves right to the next
column when the current element in A is less than the current element in B
and it moves down to the next row when the current element in B is less
than the current element in A. The path that is formed through the grid
is called the merge path. Figure 5.4 shows an example of the merge path
through the virtual grid.

If the merge path through the virtual grid can be found without sorting
the lists then we can perform the merge sort algorithm in parallel by split-
ting the work based on the number of values to be sorted per thread group.
In order to make optimal use of the GPU resources and minimize gathers
and scatters to global memory, the merge sort should also be performed
in group shared memory. The amount of work performed by each thread
should also be the same so that each thread finishes its merge sort at the
same time reducing the chance of idle threads.

To parallelize the merge sort algorithm, the input lists are split based on
the number of elements that should be sorted by each thread. A diagonal
line which represents the splitting of the input lists can be drawn through
the virtual grid. The point at which the diagonal line intersects with the
merge path indicates the point at which the two lists are split. Figure 5.5
shows an example of the diagonal split through the virtual grid. The point
that the diagonal crosses the merge path determines which values from A
and B will be merged by each thread.

46 Chapter 5. Sorting

FIGURE 5.4: The serial merge can be visualized as a grid
that is formed by placing the elements of A in the columns
of the grid and the elements of B in the rows of the grid.
The red line in represent the merge path that is the result of
merging the elements of A and B to form the sorted list C.

FIGURE 5.5: The green diagonal line represents the split
that is made to parallelize the merge sort function. Where
the diagonal line intersects the merge path indicates the val-
ues from A and B that will be sorted by each thread. In this
example, the diagonal split occurs every 8 values. In this
case 4 values from A and 4 values from B will be merged

by each thread.

The point at which the diagonal split crosses the merge path is called
the merge path partition. To find the point in list A and list B to begin the
merge, a binary search is executed over the lists. The binary search starts

5.3. Merge Sort 47

at the midpoint between the start of the lists and the diagonal point. If
the value of A at the midpoint is less than the value of B at the diagonal
minus the midpoint then the starting point is set to the midpoint otherwise
the end point is set to the midpoint and the search starts again. Algorithm
5.3 shows the pseudo-code for the binary search that finds the merge path
partition point. The binary search performs in O(log2 n) time where n is
the size of the diagonal and requires at most O(log2 n) reads from global
memory.

Algorithm 5.3 Parallel merge path partition.

Require: A is a sorted list.
Require: B is a sorted list.
Require: diag is the diagonal split.

1: function MERGEPATHPARTITION(A,B,diag)
2: begin←MAX(0,diag − |B|)
3: end←MIN(diag,|A|)
4: while begin < end do
5: mid← b(begin+ end)/2c
6: if A[mid] < B[diag − 1−mid] then
7: begin← mid+ 1
8: else
9: end← mid

10: end if
11: end while
12: return begin
13: end function

To reduce reads from global memory during the serial merge operation,
it is ideal to first store the values from bothA andB in shared memory. The
merge path partition algorithm can be applied to the entire thread group to
determine the merge path partition for each thread group. When the merge
path partitions for each thread group are known, the sub array of A and B
can be loaded into shared memory. Algorithm 5.4 shows the pseudo-code
for the parallel merge. It is assumed that the sub arrays of A and B have
been loaded into shared memory based on the merge path partitions of the
thread group.

48 Chapter 5. Sorting

Algorithm 5.4 Parallel merge sort.

Require: A is a sorted sub array stored in shared memory.
Require: B is a sorted sub array stored in shared memory.
Require: vt is the number of values to sort per thread.
Require: tid is the ID of the thread within the thread group.
Ensure: C stores the result of sorting A and B.

1: function PARALLELMERGE(A,B,vt,tid)
2: diag0 ← vt ∗ tid
3: diag1 ← vt ∗ (tid+ 1)
4: a0 ←MERGEPATHPARTITION(A,B,diag0)
5: a1 ←MERGEPATHPARTITION(A,B,diag1)
6: b0 ← diag0 − a0
7: b1 ← diag1 − a1
8: C[diag0 · · · diag1]← SERIALMERGE(A[a0 · · · a1],B[b0 · · · b1])
9: return C

10: end function

The parallel merge function shown in Algorithm 5.4 first computes the
diagonals for the current thread. The merge path partitions are computed
based on the diagonals and the ranges of A and B that will be merged se-
rially for this thread are determined. Each thread then performs a serial
merge over the sub-arrays of A and B and stores the result in C.

The parallel merge algorithm shown here is a simplified version of the
final parallel merge function and does not show the steps required to move
the sub-arrays ofA andB into shared memory. The algorithm also does not
account for the case when the number of threads required to sort A and B
is less than the number of available threads.

49

Chapter 6

Morton Code

6.1 Introduction

A Morton code (Morton, 1966) is a scalar integer code that represents a mul-
tidimensional position in space. The Morton code is guaranteed to preserve
the locality of the points in space based on the Z-order of the points (Figure
6.1).

The Morton code can be considered a spatial sort key for the object it
represents. If the Morton codes for all of the objects in a scene are sorted, the
order of the objects in the sorted list will follow a space-filling curve called
the Z-order curve (Figure 6.1). This type of space-filling curve is ideal for
constructing the leaf nodes of a Bounding Volume Hierarchy (which is the
subject of the next chapter).

The first step to finding the Morton code for the objects in the scene is
to compute the minimum bounding volume that fully encloses all of the
objects in the scene. The minimum bounding volume is used to normalize
the positional components of the objects into the range [0 . . . 1].

With the bounding volume known, the Morton codes can be computed
by normalizing the positional components of the scene objects into the range
[0 . . . 1] then scaling them by 2k − 1 where k is the number of bits for each
positional component. For example, to convert a 3D position into a 32 bit
Morton code, the maximum value for k is 10 because each of the 3 compo-
nents uses 10 bits in the Morton code for a total of 30 bits. In this case, two
of the 32 bits would be unused.

The final Morton code is produced by interleaving the bits of the nor-
malized and scaled positional values.

6.2 Minimum Bounding Volume

The first step to generating the Morton codes for the objects in the scene is
to normalize the position of the objects in the scene into the range [0 . . . 1].
This is accomplished by determining the minimum Axis-Aligned Bounding
Box (AABB) that encloses all of the objects in the scene. The AABB over
the objects is used to shift and scale the position of the objects so that the
minimum point of the bounding volume is at (0, 0, 0) and the maximum
point of the bounding volume is at (1, 1, 1).

In order to create the bounding box for the objects, the parallel reduc-
tion algorithm described in Section 4.2 is used to find the minimum and
maximum points that encloses all of the objects in the scene. It is assumed
that the AABB for a single object can be determined either directly or by
deriving it from some properties of the object. For example, to compute

50 Chapter 6. Morton Code

the AABB for a triangle, the minimum and maximum of all three vertices
is used. For more complex scene objects, it may be reasonable to store the
AABB as a property of the object.

The method to reduce the AABB over the lights uses a 2-pass approach.
In the first pass, A maximum of p thread groups are dispatched to reduce
the n values. Each thread group produces a single value that is written to
global memory. Each thread group reduces n/(t× p) values where n is the
total number of values to be reduced and t is the number of threads per
thread group.

In the first pass of the reduction, each thread reduces n/(t × p) objects
serially and stores the reduced value in thread local storage (registers). The
locally reduced AABB for the objects is written to group shared memory
and the LogStepReduction function is invoked to perform the final reduction
to produce a single value for the thread group. The pseudo code for the
first pass of the parallel reduction is shown in Algorithm 6.1.

Algorithm 6.1 First pass of the parallel reduction.

Require: O is a list of n objects.
Require: AABB is a list of AABBs in group shared memory.
Require: gid is the index of the current thread group.
Require: tid is the index of the thread within the thread group.
Require: dtid is the index of the thread within the dispatch.
Require: p is the number of thread groups.
Require: t is the number of threads per thread group.

1: function REDUCE1(gid,tid)
2: aabbmin ← FLT_MAX
3: aabbmax ← −FLT_MAX
4: for i← dtid to n step (t× p) do
5: o← O[i]
6: aabbmin ←MIN(aabbmin,opos − orange)
7: aabbmax ←MAX(aabbmax,opos + orange)
8: end for
9: AABB[tid]← aabb

10: LOGSTEPREDUCTION(gid,tid)
11: end function

The result of the first pass of the reduction is a maximum of p values, one
value per thread group, reduced and stored in global memory. The second
pass of the reduction dispatches only a single thread group of p threads to
perform the final reduction. The algorithm for the second pass is similar to
the first pass, the primary difference being that the resulting AABB’s from
the first pass are being used as input for the reduction instead of the objects
position and range. The result of the second pass is a single value written
to global memory that defines the AABB that encompasses all of the objects
in the scene.

Given the minimum AABB that encloses all of the objects in the scene,
the Morton codes for each object can be computed.

6.3. Compute Morton Codes 51

6.3 Compute Morton Codes

Morton code or Morton-order is a function which maps multi-dimensional
data into 1-dimensional space while preserving the locality of the data points
(Morton, 1966). For a k-bit Morton code, each component of the spatial co-
ordinate is converted to its k-bit binary representation. The Morton code
is computed by interleaving the k-bits of the coordinate components. The
result is a dk-bit integer value, where d is the dimensionality of the coordi-
nate space, that when sorted will arrange the points in the set according to
the z-order of the points. The recursively z-shaped curve that is produced
from the sorted Morton codes is shown in Figure 6.1.

FIGURE 6.1: Z-order curve (Dickau, 2008).

Before the Morton code can be computed, the floating-point represen-
tation of the points in 3D space need to be converted to their integer repre-
sentation. The floating-point components are converted to integers by first
normalizing the points within the AABB of the data set and then scaling
each component by 2k − 1. The bits of the resulting integer components are
interleaved producing the final Morton code. Figure 6.2 shows an example
of computing the Morton code for a 3-component vector.

Algorithm 6.2 shows the function to compute the k-bit Morton code m
from a quantized value q. The Morton code is computed by combining the
bits resulting by masking the bth bit of the x, y, and z components of the
quantized value q and shifting by s bits to the left.

52 Chapter 6. Morton Code

FIGURE 6.2: The integer representation of a coordinate in
3D space (A); The 4-bit binary representation of the coordi-
nates (B); The result of interleaving the bits of the coordinate
components (C); The resulting 12-bit Morton code in deci-

mal representation (D).

Algorithm 6.2 Compute the k-bit Morton code for quantized coordinate c.

Require: q is the quantized coordinate.
Require: k is the number of bits of each coordinate.
Ensure: m is the dk-bit Morton code.

1: function MORTONCODE(q,k)
2: m← 0
3: s← 0
4: b← 1
5: while b < 2k do
6: m← m∨ SHIFTLEFT(qx ∧ b,s+ 0)
7: m← m∨ SHIFTLEFT(qy ∧ b,s+ 1)
8: m← m∨ SHIFTLEFT(qz ∧ b,s+ 2)
9: b← SHIFTLEFT(b,1)

10: s← s+ 2
11: end while
12: return m
13: end function

Algorithm 6.3 shows the kernel function to compute the Morton codes
for the lights in the scene. The light’s position is normalized by shifting
the light’s position by the minimum point of the AABB and scaling it by
the range of the AABB. The quantized position of the light q is computed
by multiplying each component of the normalized light position by 2k −
1. The resulting quantized position is a 3-component vector where each
component is in the range [0 · · · 2k).

6.3. Compute Morton Codes 53

Algorithm 6.3 Compute k-bit Morton codes for the lights.

Require: O is a list of n objects.
Require: AABB is the minimum AABB over the objects.
Require: k is the number of bits of each coordinate of the Morton code.
Require: dtid is the index of the thread within the dispatch.
Ensure: M will contain the n Morton codes for the objects.

1: function COMPUTEMORTONCODES(dtid,k)
2: r ← AABBmax −AABBmin
3: if dtid < n then
4: o← O[dtid]

5: q ←
(
opos−AABBmin

r

)
×
(
2k − 1

)
6: M [dtid]←MORTONCODE(q,k)
7: end if
8: end function

With the Morton codes generated for all of the objects in the scene, the
next step is to sort the Morton codes using the hybrid sorting technique
described in Chapter 5. After the Morton codes have been sorted, the BVH
over the scene objects can be constructed. BVH construction and traversal
is the subject of Chapter 7.

55

Chapter 7

Bounding Volume Hierarchy

7.1 Introduction

A Bounding Volume Hierarchy (BVH) is a tree-like data structure that allows
for quickly determining if two or more scene primitives are overlapping
with each other. The leaf nodes of the BVH are constructed by considering
the smallest primitive in the scene. For physics optimizations, the smallest
primitive may be the physics objects in the scene, or for ray-tracing applica-
tion, the smallest primitive would be the individual triangles that compose
the geometry in the scene. The Axis-Aligned Bounding Box (AABB) that
minimally encloses the primitive is determined by taking the primitives’s
minimum and maximum points in space and the AABB is used to construct
the leaf nodes of the BVH. The upper nodes of the BVH are constructed by
taking the leaf nodes and building an AABB that minimally encloses the
child nodes. A BVH can be constructed by taking 2 or more leaf nodes to
construct the upper nodes of the BVH. The number of child nodes used to
construct the upper nodes of the BVH is called the degree of the BVH. An
example of a 2-degree BVH is shown in Figure 7.1.

FIGURE 7.1: A Bounding Volume Hierarchy built over sev-
eral primitives in 2D space (Karras, 2012).

This chapter describes the construction and traversal of a 32-degree BVH.
A 32-degree BVH was chosen so that the BVH can be constructed and tra-
versed by 32 threads using warp-synchronous lock-step traversal. This
eliminates the need for thread group synchronization barriers during BVH
construction and traversal providing an opportunity to exploit a perfor-
mance improvement.

56 Chapter 7. Bounding Volume Hierarchy

7.2 BVH Construction

The method to construct the BVH described here uses a bottom-up ap-
proach. The leaf nodes of the BVH are implicitly derived from the AABB
of the scene primitives and are not directly stored in the BVH. The AABB
of the primitives are used to construct the lowest level child nodes of the
BVH. To construct the child nodes, 32 consecutive primitives are read from
the sorted list. In order to ensure spatial locality, the primitives are sorted
using their Morton code using the technique described in Chapter 6 and
sorting is described in Chapter 5.

The BVH is constructed in two phases. Two phases are required to con-
struct the BVH because the results of the first phase are written to global
memory. The only way to synchronize writes to global memory that oc-
cur across thread group boundaries is by invoking a separate dispatch (as
described in Chapter 3).

In the first phase, the AABBs for the lowest level child nodes of the
BVH are computed. This is done by reading the AABB of 32 primitives and
reducing them to a single AABB that encloses all 32 primitives.

In the second phase of the BVH construction, the upper nodes of the
BVH are built. The upper nodes of the BVH are constructed in a simi-
lar manner to the child nodes. The primary difference between these two
phases is the source of the AABB in the first phase is derived from the scene
primitives and in the second phase the AABBs are derived from the lower
child nodes of the BVH. Figure 7.2 shows an example of the two phases that
are required to construct the BVH.

FIGURE 7.2: In the first phase of the BVH construction, the
AABB of the child nodes of the last level of the BVH tree are
computed from the sorted scene primitives. In the second
phase of the BVH construction, the upper nodes are com-

puted.

7.2.1 Build Leaf Nodes

The leaf nodes of the BVH are constructed by taking 32 primitives from the
sorted list and building the AABB over the primitives. The AABB is then
written to the first child at the lowest level of the BVH tree. The process
continues for the next set of 32 primitives until all of the primitives have
been processed. Since the leaf nodes of the BVH are the AABB of the primi-
tives themselves they are not explicitly stored in the BVH. The indices of the
primitives in the sorted list can be derived from the ID of the child nodes.

7.3. BVH Traversal 57

The choice of 32 primitives for each node of the BVH was chosen so that
the AABB for the primitives can be computed in warp-synchronous lock-
step. Each thread group of the compute shader computes 32 child nodes
of the BVH and there is no need to perform thread group synchronization
barriers.

Each thread reads a single AABB from the sorted list and stores the
AABB in group shared memory. A parallel log-step reduction (Section 4.2)
is performed over the 32 AABBs using the warp-synchronous optimization
shown in Algorithm 4.2. The first thread of each warp writes the reduced
AABB to the child node of the BVH. The pseudo-code for the construction
of the leaf nodes of the BVH is shown in Algorithm 7.1.

Algorithm 7.1 Build the leaf nodes of the BVH.

Require: O is a sorted list of n primitives.
Require: tid is the thread ID in the thread group.
Require: dtid is the thread ID in the dispatch.
Require: AABB is the AABB of the primitives stored in group shared

memory.
Ensure: BVH is the BVH data structure stored in global memory.

1: function BUILDLEAFNODES(O,dtid,tid)
2: o← O[dtid]
3: AABB[tid]← oAABB
4: LOGSTEPREDUCTION(AABB,tid)
5: if MOD(tid,32)= 0 then
6: i← FIRSTCHILDINDEX(n) +dtid

32
7: BVH[i] = AABB[tid]
8: end if
9: end function

In the next phase of the BVH construction, the upper nodes of the BVH
are constructed.

7.2.2 Build Upper Nodes

The algorithm to build the upper nodes of the BVH is very similar to that of
the leaf nodes shown in Algorithm 7.1. The primary difference being that
the AABB of the leaf nodes are read directly from the BVH instead of being
constructed from the scene primitives. The compute shader to compute
the AABBs for the upper nodes is invoked for each level of the BVH above
the leaf nodes. This means that the compute shader to compute the upper
levels of the BVH will be invoked at most dlog32(n)e− 1 times. If the AABB
over the scene primitives that was used to compute the Morton codes as
described in Chapter 6 is available, then it can be used directly for the root
node of the BVH and does not need to be reconstructed.

In the next section, the traversal of the BVH is described.

7.3 BVH Traversal

BVH traversal is used to quickly determine which leaf nodes of the BVH
are contained within a certain area of the scene. For example, if the scene

58 Chapter 7. Bounding Volume Hierarchy

was split into a regular grid (a voxel grid) then an overlap test is performed
with each node of the BVH against the AABB for the cell of the voxel grid.
Any leaves of the BVH that are contained in the child node of the BVH
that overlaps the AABB of the cell of the voxel grid is considered to be
contained within the cell. Optionally, each leaf node can also be checked
for intersection against the voxel cell to achieve a more refined result. In
this section, the term cell is used to refer to the area in the scene that is being
checked for overlap with the nodes of the BVH.

The method to traverse the BVH uses a stack to push the index of the
child node in the BVH if the AABB of the child node overlaps with the
cell. The technique to traverse the BVH was inspired by Tero Karra (Karras,
2012).

A thread group of 32 threads is dispatched for each cell in the scene.
Each thread checks a child node of the BVH. If the AABB of the BVH node
overlaps with the AABB of the cell, the index of the BVH node is pushed
onto the stack. If the traversal reaches the leaf nodes, then the AABB of the
primitives are checked if they intersect with the AABB of the cell. The first
thread of each warp pops a node off the stack and the process continues
until the stack is empty.

Algorithm 7.2 Traverse the BVH and append overlapping lights to the light
list.
Require: O is a sorted list of n primitives.
Require: pIdx is the index of the parent node in the BVH.
Require: tid is the thread ID in the thread group.
Require: AABB is the AABB of the current cell.

1: function TRAVERSEBVH(O,tid)
2: if tid = 0 then
3: pIdx← 0
4: PUSHNODE(0)
5: end if
6: repeat
7: i← FIRSTCHILDINDEX(pIdx) + tid
8: if ISLEAFNODE(i) then
9: oIdx← GETINDEXOFPRIMITIVE(i)

10: o← O[oIdx]
11: if AABBINTERSECTAABB(oAABB ,AABB) then
12: APPENDTOLIST(o)
13: end if
14: else if AABBINTERSECTAABB(AABB,BVH[i]) then
15: PUSHNODE(i)
16: end if
17: if tid = 0 then
18: pIdx← POPNODE

19: end if
20: until pIdx = 0
21: end function

Algorithm 7.2 shows the traversal of the BVH. First the index of the
root node (index 0) is pushed onto the stack. It isn’t necessary to check the
intersection of the root node’s AABB with the AABB of the cell because it is

7.3. BVH Traversal 59

just as fast to check the AABB of all 32 child nodes. If none of the first child
nodes overlap with the AABB of the volume tile then neither does the root
and traversal will end.

If the traversal reaches a leaf node, the index of the primitive is com-
puted from the index of the child node and the intersection test is per-
formed against the AABB of the primitive. If the AABB of the primitive
overlaps with the AABB of the cell, it is appended to a list of primitives for
that cell.

The result of the BVH traversal is a list of primitive ID’s for each cell in
scene. The resulting list can then be used in a later stage of the technique
to optimize expensive operations (for example, collision detection, ray trac-
ing, or shading).

Chapter 8 describes the implementation of the Volume Tiled Forward
Shading technique. An optimized version of the technique uses the BVH
construction method described in this chapter to build a BVH over the dy-
namic lights in the scene. The resulting light list is used to minimize the
number of lights that must be considered during the shading pass of the
Volume Tiled Forward Shading technique.

61

Chapter 8

Implementation

8.1 Introduction

In this chapter, the implementation of the Volume Tiled Forward Shading
technique is described. Volume Tiled Forward shading builds upon the
Tiled Forward Shading technique (Olsson and Assarsson, 2011) by dividing
the 2D screen space tiles into 3D volume tiles. Volume Tiled Forward Shad-
ing uses the same log-space partitioning method used to divide clusters
used in the Clustered Shading technique (Olsson, Billeter, and Assarsson,
2012) but unlike the Clustered Shading technique described by Olsson, Bil-
leter, and Assarsson, Volume Tiled Forward Shading provides native sup-
port for transparent geometry.

Similar to Tiled and Clustered Shading, Volume Tiled Forward Shading
is a rendering technique that minimizes the number of lights that must be
considered during shading. It accomplishes this by first assigning the lights
in the scene to the 3D volume tiles by performing an Axis-Aligned Bound-
ing Box (AABB) test against the lights and the volume tile. Only lights that
are contained within the same volume tile as the current fragment need to
be considered during shading.

Assigning the lights to the volume tiles using a brute-force approach re-
veals a performance bottleneck in the Volume Tiled Shading technique. In
order to alleviate the performance bottleneck of the light assignment phase
of the Volume Tiled Forward Shading technique, a Bounding Volume Hier-
archy (BVH) can be constructed over the lights in the scene. During the light
assignment phase, the BVH is traversed to find the subset of lights over-
lapping the current volume tile. Only the lights that are contained within
the nodes of the BVH that are overlapping with the volume tile need to be
checked for intersection with the volume tile.

8.2 Volume Tiled Forward Shading

The Volume Tile Forward Shading technique consists of two main phases:

1. Initialization

2. Update

In the initialization phase, the AABBs for the volume tiles are generated.
In this phase, the size of the volume grid is computed and based on the
subdivision of the volume grid, the AABBs for each tile are computed.

The initialization phase is executed when the application is started or
if the dimensions of the framebuffer are changed, for example if the screen

62 Chapter 8. Implementation

size is changed. Changing the field of view of the camera will also require
the volume gird to be rebuilt since the number of subdivisions in the depth
is dependent on the field of view of the camera. The purpose of the initial-
ization phase is to compute the dimensions of the grid and to precompute
an AABB for each volume tile.

In the update phase, the light assignment to volume tiles is made. This
phase uses the AABBs of the volume tiles computed in the initialization
phase to perform intersection tests between the lights in the scene and the
volume tiles. During the shading pass, only the lights that are contained
within the volume tile of the current fragment need to be considered.

The update phase is executed each frame that either the camera moves,
an object in the scene changes, or the position or size of a light in the scene
is modified. Since any of these events can occur during a frame, the update
phase is executed each frame regardless of the previous state of the scene.

8.2.1 Initialization

The purpose of the initialization phase of the Volume Tiled Forward Shad-
ing technique is to compute the size of the volume grid and to compute the
AABBs for each volume tile.

Compute Grid Size

Volume Tiled Forward Shading uses a 3D grid of AABBs. Since the AABBs
are stored in view space, it is only necessary to build the volume grid when
the screen is resized or the field of view of the camera is changed.

The dimensions of the volume grid are based on the screen dimensions
and the width and height of a tile of the volume grid in screen pixels. For a
given tile size (tx, ty) and screen dimensions (w, h), the number of subdivi-
sions in the volume grid (Sx, Sy) is computed as

(Sx, Sy) =

(⌈
w

tx

⌉
,

⌈
h

ty

⌉)
(8.1)

The number of subdivisions in the depth of the volume grid is depen-
dent on the vertical field of view of the camera (2θ), the distance to the near
clipping plane (znear), the distance to the far clipping plane (zfar), and the
number of vertical subdivisions (Sy).

Sz =

 log (zfar/znear)

log
(
1 + 2 tan θ

Sy

)
 (8.2)

Compute AABBs

With the size of the volume grid known, the AABB for each volume tile
is computed. Algorithm 8.1 describes how to compute the AABB for the
volume tile at index (i, j, k).

On lines 2, and 3 of Algorithm 8.1, the distance in view space to the
planes of the volume tiles at index k and k + 1 is computed.

On lines 4, and 5 the screen space points of the top-left and bottom-right
corners of the volume tile are computed. On lines 6, and 7 the screen space
points are converted to view space.

8.2. Volume Tiled Forward Shading 63

Algorithm 8.1 Compute Volume Tile AABBs

Require: Sx is the number of subdivisions in the width.
Require: Sy is the number of subdivisions in the height.
Require: znear is the distance to the near clipping plane.
Require: zfar is the distance to the far clipping plane.
Ensure: AABB will contain the AABB for volume tile at index (i, j, k).

1: function COMPUTEAABB(i,j,k)

2: knear ← znear

(
1 + 2 tan θ

Sy

)k
3: kfar ← znear

(
1 + 2 tan θ

Sy

)k+1

4: pmin ← {i · Sx, j · Sy, 1}
5: pmax ← {(i+ 1) · Sx, (j + 1) · Sy, 1}
6: pmin ← SCREENTOVIEW(pmin)
7: pmax ← SCREENTOVIEW(pmax)
8: pmin,near ← LINEINTERSECTPLANE(0,pmin,knear)
9: pmin,far ← LINEINTERSECTPLANE(0,pmin,kfar)

10: pmax,near ← LINEINTERSECTPLANE(0,pmax,knear)
11: pmax,far ← LINEINTERSECTPLANE(0,pmax,kfar)
12: AABBmin ←MIN(pmin,near,pmin,far,pmax,near,pmax,far)
13: AABBmax ←MAX(pmin,near,pmin,far,pmax,near,pmax,far)
14: end function

On lines 8-11, the four corner points of the AABB are computed by per-
forming a line-plane intersection test.

The minimum point of the AABB is the minimum of all of the corner
points of the AABB and the maximum point of the AABB is the maximum
of all of the corner points of the AABB. This will result in neighbouring
AABBs overlapping slightly but this is intended behaviour because the vol-
ume created by the volume tiles are not perfect cubes but actually more
resembling the shape of a frustum. The AABB for the volume tile is the
minimum bound box that encloses that frustum (see Figure 8.1).

64 Chapter 8. Implementation

FIGURE 8.1: The AABB for the volume tile.

8.2.2 Update

The update phase of the Volume Tiled Rendering technique is performed
each frame that the scene needs to be rendered. The main purpose of the
update phase is to assign the lights in the scene to the volume tiles. It is
important that the light assignment is only computed for volume tiles that
actually contain a visible fragment in 3D space. Only fragments that are
not occluded by opaque geometry should be activated. To ensure that only
the volume tiles that contain visible fragments that are not occluded by
opaque geometry are activated, a depth pre-pass is executed by rendering
the opaque objects in the scene and updating the depth buffer. The active
tiles are then determined by rendering both opaque and transparent objects
in the scene and activating the tiles that contain a fragment during render-
ing.

The light assignment phase is executed for all active volume tiles. Using
a naive approach, each active volume tile performs a brute-force search by
testing every light in the scene for intersection. An optimization for the
light assignment pass is described in Section 8.2.3.

The update phase consists of several passes:

1. Depth pre-pass

2. Mark active tiles

3. Build tile list

4. Assign lights to tiles

5. Shade samples

The depth pre-pass ensures all opaque geometry is recorded into the
depth buffer so that only volume tiles containing visible fragments are ac-
tivated in the next pass.

8.2. Volume Tiled Forward Shading 65

In the Mark active tiles pass, both opaque and transparent geometry
are rendered. Any volume tile that contains a visible sample is flagged in
the pixel shader. By using the depth buffer from the depth pre-pass, and
relying on the GPU’s ability to perform early depth testing, no volume tiles
that contain overdrawn samples will be flagged in this pass.

After all of the volume tiles containing visible samples have been flagged,
a list of unique volume tiles is created.

In the light assignment pass, the light index list and light grid are gen-
erated by intersecting the the lights in the scene against the active volume
tiles. Each light that is partially contained in an active volume tile is added
to the light list for that volume tile.

The opaque and transparent rendering passes are performed in the same
way as tiled rendering. Only the lights that are contained within the same
volume tile as the sample is considered during shading.

Depth Pre-pass

The purpose of the depth pre-pass is to record all of the opaque objects
to the depth buffer. This ensures that the pixel shader for the next pass is
only invoked for visible samples. Any samples that will be overdrawn by
samples closer to the viewer will not cause the volume tile to be activated
in the next pass. The result of the depth pre-pass is shown in Figure 8.2.

FIGURE 8.2: The result of the depth pre-pass.

Mark Active Tiles

After the depth pre-pass, the scene is rendered again but instead of render-
ing only opaque objects, both opaque and transparent geometry are ren-
dered.

The pixel shader for this pass is very simple. First, the index of the
volume tile is computed from the pixel’s screen space position and the view
space depth. Then the volume tile for the pixel is marked as active. To mark
the current volume tile as active, a list of boolean flags is updated in the

66 Chapter 8. Implementation

pixel shader. Each entry of the list represents one volume tile in the grid.
The algorithm for the pixel shader is shown in Algorithm 8.2.

Algorithm 8.2 Mark Active Tiles

Require: x is the pixel’s x coordinate in screen space.
Require: y is the pixel’s y coordinate in screen space.
Require: z is the pixel’s z coordinate in view space.
Require: TileF lags is a list of boolean flags for each tile.

1: function MARKTILE(x,y,z)
2: i← COMPUTETILEINDEX(x,y,z)
3: TileF lags[i]← true
4: end function

Build Tile List

The sparse list of active tiles generated from the previous pass needs to be
compressed into a dense list of unique tile indices. To generate the dense
list of tile indices, a compute shader is invoked over the list of tile flags.
Each thread of the compute shader checks a single entry in the tile flags
array. If the tile was flagged (true) in the previous pass, the index of that
tile is written to a list of unique tile ID’s. The algorithm for the compute
shader to build the unique list of tile ID’s is shown in Algorithm 8.3.

Algorithm 8.3 Build Tile List

Require: tid is the ID of the thread in the dispatch.
Require: TileF lags is a sparse list of boolean flags for each tile.
Ensure: ActiveT iles is a dense list of active volume tile ID’s.

1: function BUILDTILELIST(tid)
2: if TileF lags[tid] then
3: ATOMICAPPEND(ActiveT iles,tid)
4: end if
5: end function

The result of the Build Tile List pass is a dense list of active volume tile
ID’s. This is similar to the result of the Find Unique Clusters pass of the
Clustered Shading technique described by Olsson et al. but does not require
the sorting and compaction steps described in their paper (Olsson, Billeter,
and Assarsson, 2012).

Assign Lights to Tiles

The Assign Lights to Tiles pass is similar to the Light Culling pass of
the Tiled Forward Shading technique described in Section 2.1.3. A compute
shader is executed over the active volume tiles, one thread group per tile.
For each active volume tile, all of the lights in the scene are tested against
the AABB of the volume tile. Lights that intersect with the AABB of the
volume tile are added to a local light index list. After all of the active scene
lights have been tested, the local light index list is copied to a global light

8.2. Volume Tiled Forward Shading 67

index list. The algorithm to assign lights to the volume tiles is shown in
Algorithm 8.4.

Algorithm 8.4 Assign lights to tiles.

Require: L is a list of n lights.
Require: C is the current index in the global light index list.
Require: I is the global light index list.
Require: G is the 3D grid storing the light count and offset into the global

light index list.
Require: gid is the 3D index of the current thread group.
Ensure: G is updated with the offset and light count of the current tile.

1: function CULLLIGHTS(gid)
2: i← {0}
3: AABB ← TileAABB[gid]
4: for l in L do
5: if SPHEREINTERSECTAABB(l, AABB) then
6: APPENDLIGHT(l, i)
7: end if
8: end for
9: c← ATOMICINC(C, i.count)

10: G(gid)← (c, i.count)
11: I(c)← i
12: end function

A light grid is used to store the light count and offset into the global
light index list for each volume tile. This data structure is identical to that
used by the Tiled Forward Shading technique but the light grid for the Volume
Tiled Forward Shading technique can be visualized as a 3D light grid instead
of a 2D light grid. A single slice of the volume light grid is shown in Figure
8.3.

Shade Samples

The shading pass of the Volume Tiled Forward Shading technique is similar
to that of the Tiled Forward Shading technique. The tile ID for the current
sample is computed from the x and y screen space position and the view
space depth (z) of the sample. The light count and the offset into the global
light index list is retrieved from the volume light grid that was generated
in the previous pass and only the lights that overlap the current volume tile
are used to compute the final shading for the sample.

This process is identical for both the opaque and transparent passes.
The same volume tile light grid is used for both opaque and transparent
geometry since any volume tile that contained a sample was activated in
the Mark Active Tiles pass of the technique.

An example of the shaded scene is shown in Figure 8.4.

68 Chapter 8. Implementation

FIGURE 8.3: A single slice of the volume light grid (A). The
light grid stores the light count and an offset into the light
index list (B). The light index list stores the index of the light

source in the light list (C).

FIGURE 8.4: The Crytek Sponza scene rendered using Vol-
ume Tiled Forward Shading.

8.2.3 Optimization

The technique described in this section is the basic technique that imple-
ments Volume Tiled Forward Shading. The performance profiling results will
be shown later in Chapter 10 where the performance of the Assign Lights to
Tiles pass will show a performance bottleneck limiting the maximum num-
ber of lights that can be used in the scene.

To mitigate the performance overhead of the Assign Lights to Tiles pass,
a Bounding Volume Hierarchy (BVH) can be built over the lights in the scene

8.3. Summary 69

according to the technique described in Chapter 7. Using a BVH greatly im-
proves the light assignment pass of the Volume Tiled Forward Shading tech-
nique because instead of performing a brute-force check for every light in
the scene against the AABB of the volume tile, only the lights that are con-
tained in the BVH node that also overlap with the volume tile need to be
checked. This effectively reduces the asymptotic running time of the Assign
Lights to Tiles pass from O(mn) to O(m log32 n) where m is the number of
active volume tiles and n is the number of active lights in the scene.

8.3 Summary

In this chapter the steps of the Volume Tiled Forward Shading technique were
described. In the first pass, a depth pre-pass was performed by rendering
only the opaque objects in the scene. In the next pass, both opaque and
transparent objects are rendered using the depth buffer from the previous
pass to ensure only visible samples are rendered. For each visible sample,
the volume tile that contains the sample is activated. In order to gener-
ate a dense list of active tile IDs, a compute shader pass is executed that
writes the active tile IDs to a contiguous list. The lights in the scene are
then checked against the active volume tiles and a list of overlapping lights
for each active tile is stored in a global light index list. The global light index
list is then used to perform final shading.

An optimization technique using a BVH over the lights in the scene is
described. Using the BVH optimization greatly improves the performance
of the Assign Lights to Tiles pass as will be shown in Chapter 10.

71

Chapter 9

Experiment Setup

9.1 Introduction

This chapter describes how the experiment is created and how the perfor-
mance results are collected. How the application is created, what graphics
API and the GPU hardware that is used, the scenes that are used for render-
ing, and which tests are conducted are all important factors to understand
when analyzing the performance data.

9.2 Application

Since graphics rendering is a highly demanding task for the GPU, a lot of
consideration for performance and optimization was made. The applica-
tion was written in C++ using some features of the C++11 standard, such as
the multi-threading and async-tasks libraries were used to ensure the ren-
dering thread could run without interference from the main thread where
the windows message loop was being handled.

9.3 Graphics API

The graphics engine was created using the DirectX 12 graphics API. DirectX
12 has several advantages over previous DirectX APIs such as DirectX 11.
One major advantage of DirectX 12 is its ability to bind more than eight
Uniform Access Views (UAV). The Light Culling computer shader requires 13
UAVs to be simultaneously bound. The disadvantage of using DirectX 12
is that it is only working with the Microsoft Windows operating system
restricting the platform that the experiment can be run on to Windows. The
Vulkan API would have been a possible alternative however the Vulkan
API was not yet available to the public when the research for this paper
was started.

9.4 GPU Hardware

In order to capture the rendering performance of the various techniques,
an NVidia GeForce GTX TITAN X was used for all experiments. This GPU
was chosen to capture the performance analysis because NVidia was kind
enough to donate it for the purpose of these experiments. No other GPU
hardware was used since the most important conclusion that can be drawn
from the performance statistics are the relative performance difference be-
tween various rendering techniques. Performance scaling across various

72 Chapter 9. Experiment Setup

GPU types can be estimated if the relative performance characteristics of
the GPUs are known. As mentioned in Section 9.3 the experiment utilizes
the DirectX 12 rendering API in order to implement the experiment. This
implies that the GPU used to test the experiment must have support for this
rendering API.

9.5 Scenes

Several scene files were acquired from Morgan McGuire’s computer graph-
ics archive of meshes (McGuire, 2017). Among these scene files is the Sponza
Atrium scene which is shown in Figure 9.1. This scene was originally cre-
ated by Marko Dabrovic in 2002 (Crytek, 2010) and quickly became a pop-
ular scene for use in demonstrating rendering algorithms. This scene has
become popular because it is an elegant scene that contains vibrant colors
and the open ceiling provides a realistic scene for demonstrating environ-
ment lighting effects and global illumination effects. The Sponza scene was
chosen for this experiment not only for its visual appeal but also because
it seems representative of a typical scene that may be found in a modern
video game.

FIGURE 9.1: The Sponza Atrium scene (Crytek, 2010)

The San Miguel scene shown in Figure 9.2 was originally created by
Guillermo M. Leal Llaguno and is based on a hacienda that he visited in
San Miguel de Allende, Mexico (McGuire, 2017). This scene was chosen
as a test scene because of the large number of transparent geometry in the
scene activates a lot of volume tiles in the scene and pushes the limits of
the Volume Tiled Forward Shading algorithm. Similar to the Sponza Atrium
scene, the San Miguel scene is also representative of a scene that may be
found in a modern video game.

9.6. Algorithms 73

FIGURE 9.2: The San Migule hacienda (McGuire, 2017)

9.6 Algorithms

Several rendering algorithms were implemented for this experiment. For-
ward Rendering was implemented in order to establish a ground-truth repre-
sentation of the rendered scene and to be used as a benchmark to determine
the expected rendering quality of the test scene. A performance analysis
of Forward Rendering is provided in Chapter 10 and establishes a perfor-
mance benchmark that can be used to determine a relative performance
improvement when compared to other rendering algorithms.

Tiled Forward Shading described in Chapter 2 was also implemented since
this lighting algorithm forms the basis of the Volume Tiled Forward Shading
algorithm.

Two versions of the Volume Tiled Forward Shading algorithm were imple-
mented in the experiment. The first version implements a naive approach
to the Volume Tiled Forward Shading technique that is described in Chapter
8. The second version creates a Bounding Volume Hierarchy (BVH) over the
lights in the scene in order to improve the performance of the Assign Lights
to Tiles pass of the Volume Tiled Forward Shading technique.

9.7 Profiling

GPU profiling data is captured using GPU timestamp queries in real-time
while the application was running. No external profiling tools are used to
capture the performance information. A timestamp query is performed at
the beginning of a block of passes of the rendering technique and again
at the end of the block of passes. The number of ticks between the two
timestamps is computed and converted to milliseconds for visualization
purposes.

74 Chapter 9. Experiment Setup

9.8 Tests

For each rendering algorithm described in Section 9.6 the scene is rendered
with an increasing number of lights. The scene is rendered from a stationary
camera position while the profiler captures a minimum of 500 frames and
the average of the timings is read from the statistic data.

Initial tests are executed with an increasing number of lights while main-
taining a constant volume wherein the lights are randomly placed. This re-
sults in the density of the lights within the scene to increase linearly which
has a proportional impact on the performance of the opaque and transpar-
ent rendering passes. The performance results deceivingly show poor ren-
dering performance due to the overhead caused by the opaque and trans-
parent rendering passes. Even if only a single pixel in the scene needs to
consider one thousand lights, the performance of the entire rendering algo-
rithm will suffer.

Since an extremely high light density is not representative of a typical
scenario, the experiments were executed again with a constant light density
of 1 light/unit3. The area in which the lights are randomly placed was
increased to ensure a random distribution with a density of 1 light/unit3.
This resulted in more accurate representation of the performance results of
the Tiled and Volume Tiled Forward Shading techniques. The performance
of the Forward Shading technique is not sensitive to the density of the lights
in the scene since that technique always considers every light in the scene
for every rasterized pixel.

FIGURE 9.3: The scene contains 65,536 lights. The image on
the left shows an average light density of 4.85 light/unit3

while the image on the right shows an average light density
of 1 light/unit3.

75

Chapter 10

Results

10.1 Introduction

In this chapter, the performance of the various rendering technique de-
scribed in Section 9.6 is analysed. The performance characteristics of tra-
ditional Forward Rendering described in Section 2.1.1, Tiled Forward Shading
described in Section 2.1.3, Volume Tiled Forward Shading described in Sec-
tion 8.2, and Volume Tiled Forward Shading with BVH Optimisation described
in Section 8.2.3 are compared.

The performance results for the tests described in Chapter 9 are shown
and the performance results are analysed. All tests are performed at 1920x1080
resolution using NVidia GTX Titan X GPU. Timings shown are in millisec-
onds unless otherwise stated.

10.2 Forward Rendering

The Forward Rendering technique was run with both the Sponza Atrium (Cry-
tek, 2010) scene and the San Miguel (McGuire, 2017) scene mentioned in
Section 9.5. Since Forward Rendering is not sensitive to the light density
of the scene, the experiment was only executed with an increasing number
of lights but the area in which the lights were spawned was not adjusted
resulting in an increasing light density.

The following passes of the Forward Rendering technique were captured:

1. Depth Prepass

2. Opaque Pass

3. Transparent Pass

4. Total Rendering Time

76 Chapter 10. Results

FIGURE 10.1: Sponza Atrium scene using Forward Render-
ing.

TABLE 10.1: Timings for rendering the Sponza Atrium
scene using Forward Rendering.

Num
Lights

Depth
Prepass

Opaque
Pass

Transparent
Pass

Frame
Time

0 0.148 0.237 0.065 0.450
2 0.163 0.425 0.103 0.691
4 0.168 0.656 0.151 0.975
8 0.169 1.069 0.237 1.475
16 0.170 1.903 0.385 2.459
32 0.171 3.577 0.668 4.416
64 0.171 6.905 1.281 8.356
128 0.171 13.619 2.514 16.304
256 0.171 27.286 4.991 32.449
512 0.171 54.673 9.966 64.810
1024 0.171 109.139 19.915 129.225

From these results, it can be observed that the Forward Rendering tech-
nique exceeds the 60 FPS threshold after 128 lights and exceeds the 30 FPS
threshold at just over 256 lights and the performance decreases linearly as
the light count increases. In the case of the Sponza Atrium scene the opaque
rendering pass is the primary bottleneck for rendering while the transpar-
ent pass also degrades linearly but at a slower rate. This is expected be-
haviour for this scene since there are fewer transparent objects in the scene
than opaque objects.

In the next experiment, the San Miguel scene is loaded and the number
of lights in the scene is increased and the statistics captured.

10.2. Forward Rendering 77

FIGURE 10.2: San Miguel scene using Forward Rendering.

TABLE 10.2: Timings for rendering the San Miguel scene
using Forward Rendering.

Num
Lights

Depth
Prepass

Opaque
Pass

Transparent
Pass

Frame
Time

0 2.534 2.444 1.163 6.141
2 2.630 2.640 1.463 6.733
4 2.635 2.909 2.138 7.681
8 2.631 3.666 3.522 9.819
16 2.635 5.412 6.378 14.425
32 2.625 9.156 12.224 24.005
64 2.621 16.829 23.885 43.335
128 2.529 32.557 51.023 86.109
256 2.617 63.760 94.295 160.672

The San Miguel scene is clearly more complex than the Sponza scene
and contains much more geometry. It also contains a considerable amount
of transparent objects compared to the Sponza scene primarily due to the
large trees in the middle of the hacienda as can be seen in Figure 10.3. Due
to the large amount of transparent objects in this scene, the the transparent
pass of the Forward Rendering technique becomes the bottleneck of the ren-
dering time. This is due to the large amount of overdraw that is caused by
the transparent objects.

78 Chapter 10. Results

FIGURE 10.3: San Miguel scene showing the two large trees
in the middle of the hacienda. Each leaf on the tree is a

transparent quad causing a lot of overdraw.

10.3 Tiled Forward Shading

In the next experiment, the Tiled Forward Shading technique is tested. In the
first test, the Sponza scene is loaded again and the lights are increased and
the statistics collected. In the first case, the number of lights are increased
while the size of the volume in which the lights are placed remain constant.
In this case, the density of the lights increased linearly as the number of
lights increased.

The following passes of the Tiled Forward Shading technique were cap-
tured:

1. Depth Prepass

2. Light Culling

3. Opaque Pass

4. Transparent Pass

5. Total Rendering Time

10.3. Tiled Forward Shading 79

FIGURE 10.4: Chart showing performance of rendering the
Sponza scene using Tiled Forward Shading with increasing

light density.

TABLE 10.3: Timings for rendering the Sponza scene using
Tiled Forward Shading with increasing light density.

Num
Lights

Depth
Prepass

Light
Culling

Opaque
Pass

Transparent
Pass

Frame
Time

0 0.153 0.394 0.290 0.069 0.906
2 0.160 0.525 0.289 0.069 1.043
4 0.160 0.514 0.289 0.069 1.032
8 0.160 0.530 0.290 0.069 1.049
16 0.159 0.549 0.292 0.073 1.072
32 0.157 0.568 0.296 0.080 1.100
64 0.157 0.598 0.317 0.088 1.160
128 0.157 0.618 0.367 0.115 1.257
256 0.157 0.637 0.446 0.148 1.388
512 0.163 0.711 0.565 0.195 1.633
1024 0.163 0.768 0.781 0.239 1.951
2048 0.168 1.202 1.596 0.597 3.563
4096 0.170 1.922 2.681 1.041 5.814
8192 0.170 3.348 5.010 1.904 10.433
16384 0.169 6.026 9.725 3.747 19.666
32768 0.169 11.679 19.123 7.055 38.026

The results reveal that the performance of the Tiled Forward Shading tech-
nique improves on that of the Forward Rendering technique shown in the
previous section. Even with increasing light density, the Tiled Forward Shad-
ing technique can handle approximately 14,300 dynamic lights before cross-
ing the 60 FPS threshold and approximately 28,700 dynamic lights before

80 Chapter 10. Results

cross the 30 FPS threshold.
As expected with increasing light density, the rendering time increases

linearly as the number of lights increases. As with Forward Rendering, the
opaque pass increases at the highest rate compared to the transparent pass.
The light culling technique also increases linearly as the number of lights
increases but at a slower rate than the opaque rendering pass.

In the next test, the same scene was used but the light density is not
more than 1 light/unit3.

FIGURE 10.5: Chart showing performance of rendering the
Sponza scene using Tiled Forward Shading with maximum

light density of 1 light/unit3.

TABLE 10.4: Timings for rendering the Sponza scene us-
ing Tiled Forward Shading with maximum light density of

1 light/unit3.

Num
Lights

Depth
Prepass

Light
Culling

Opaque
Pass

Transparent
Pass

Frame
Time

30,000 0.164 7.555 2.712 1.140 11.571
50,000 0.166 12.609 2.768 1.139 16.683
100,000 0.166 25.375 2.767 1.212 29.520
200,000 0.166 50.633 2.684 1.155 54.637

In this case the time required for the opaque and transparent rendering
passes remains constant. This shows that the Tiled Forward Shading ren-
dering technique is effective at improving the performance of the shading
passes of the rendering technique when the light density remains constant.
The major bottleneck of this rendering technique is the light culling pass,
increasing linearly as the number of lights increases. This is an indication

10.4. Volume Tiled Forward Shading 81

that in order to improve the performance of this rendering technique, the
most obvious area to invest effort is the light culling pass.

10.4 Volume Tiled Forward Shading

The Volume Tiled Forward Shading technique was tested with the Sponza
scene. During the first test, the number of lights was increased without
modifying the volume wherein lights were randomly placed. In the sec-
ond test, the number of lights was increased while maintaining a maximum
light density of 1 light/unit3. The rendering technique was also tested us-
ing the San Miguel scene while maintaining a maximum light density of
1 light/unit3.

Statistics were collected for the following passes of the rendering algo-
rithm:

1. Depth Prepass

2. Mark Active Tiles

3. Build Tile List

4. Assign Lights

5. Opaque Pass

6. Transparent Pass

7. Total Rendering Time

The Mark Active Tiles pass will "activate" any volume tiles that contain a
sample while the Build Tile List pass creates a dense list of volume tile ID’s
that are activated. The Assign Lights pass assigns lights to active tiles that
are intersecting with the volume tiles. These passes are described in detail
in Chapter 8 but are mentioned here for clarity.

In the first test, the Sponza scene was loaded and the number of lights
was increased while keeping the volume the lights were placed in a con-
stant size resulting in an increasing light density.

82 Chapter 10. Results

FIGURE 10.6: Chart showing performance of rendering the
Sponza scene using Volume Tiled Forward Shading with in-

creasing light density.

TABLE 10.5: Timings for rendering the Sponza scene using
Volume Tiled Forward Shading with increasing light density.
The Depth Prepass, Mark Active Tiles, and Build Tile List data

is omitted from this table to conserve space.

Num
Lights

Assign
Lights

Opaque
Pass

Transparent
Pass

Frame
Time

0 0.136 0.296 0.078 0.798
2 0.164 0.296 0.078 0.833
4 0.164 0.296 0.078 0.833
8 0.168 0.308 0.081 0.852
16 0.169 0.303 0.080 0.849
32 0.173 0.323 0.083 0.875
64 0.172 0.309 0.081 0.858
128 0.181 0.355 0.091 0.923
256 0.197 0.394 0.100 0.992
512 0.215 0.444 0.104 1.064
1024 0.353 0.599 0.121 1.378
2048 0.769 0.832 0.183 2.090
4096 1.409 1.368 0.282 3.366
8192 2.695 2.378 0.453 5.833
16384 5.369 4.108 0.741 10.527
32768 10.611 7.644 1.447 20.010
65536 21.804 15.618 2.873 40.607

10.4. Volume Tiled Forward Shading 83

The Volume Tiled Forward Shading rendering technique shows a signifi-
cant performance increase over Tiled Forward Shading even when the light
density is increased. This is primarily due to the better light assignment
that can be achieved by segmenting the light tiles in the depth. Since fewer
false positives are generated by the volume tiled culling pass, the overall
performance of the rendering technique is improved. It can be observed
from these results that the time for the transparent and opaque passes does
increase linearly, while the time required for the light assignment stage in-
creases at a faster rate.

In the next test, the Sponza scene is rendered again using the Volume Tiled
Forward Shading technique. In this case, the light density does not exceed
1 light/unit3.

FIGURE 10.7: Chart showing performance of rendering the
Sponza scene using Volume Tiled Forward Shading with max-

imum light density of 1 light/unit3.

TABLE 10.6: Timings for rendering the Sponza scene using
Volume Tiled Forward Shading with maximum light density
of 1 light/unit3. The Depth Prepass, Mark Active Tiles, and
Build Tile List timings are omitted from this table to conserve

space.

Num
Lights

Assign
Lights

Opaque
Pass

Transparent
Pass

Frame
Time

30,000 9.135 1.419 0.279 11.114
50,000 14.838 1.421 0.271 16.810
100,000 30.901 1.440 0.266 32.894
200,000 62.746 1.399 0.261 64.692
500,000 200.852 1.356 0.252 202.739

84 Chapter 10. Results

While the average density of the lights in the scene does not exceed
1 light/unit3, the performance of the opaque and transparent shading passes
remains almost insignificant to the overall performance of the rendering
algorithm and it is clear from these results that the light assignment pass
consumes nearly 100% of the total rendering time.

In the next test, the San Miguel scene was rendered using the Volume
Tiled Forward Shading technique while maintaining a maximum light den-
sity of 1 light/unit3.

FIGURE 10.8: Chart showing performance of rendering the
San Miguel scene using Volume Tiled Forward Shading with

maximum light density of 1 light/unit3.

10.5. Volume Tiled Forward Shading (BVH) 85

TABLE 10.7: Timings for rendering the San Miguel scene us-
ing Volume Tiled Forward Shading with maximum light den-
sity of 1 light/unit3. The Depth Prepass, Mark Active Tiles,
and Build Tile List timings are omitted from this table to con-

serve space.

Num
Lights

Assign
Lights

Opaque
Pass

Transparent
Pass

Frame
Time

0 0.257142 2.46628 1.1836 9.7806148
2 0.325061 2.46049 1.17391 9.8930485
4 0.330718 2.47328 1.19382 9.9534927
8 0.325999 2.46624 1.18611 9.9100997
16 0.320079 2.43724 1.17058 9.7923808
32 0.310132 2.39869 1.14573 9.627357
64 0.303072 2.34331 1.13876 9.4462456
128 0.327978 2.25679 1.1598 9.4033059
256 0.328362 2.33662 1.12413 9.4245832
512 0.439239 2.54218 1.2427 10.3517244
1024 0.764081 2.54836 1.23193 10.6700791
2048 1.60282 2.50297 1.23063 11.3737761
4096 2.96093 2.5123 1.22029 12.7359512
8192 5.65014 2.50619 1.21972 15.3887541
16384 10.5104 2.41291 1.17965 19.8892828
32768 20.4104 2.39271 1.21395 29.7193525
65536 48.5804 3.29217 2.76885 60.7786017
131072 101.763 3.92572 3.90272 115.4876544

Due to the increased geometric complexity of the San Miguel scene, the
timings of the opaque and transparent shading passes are increased com-
pared to that of the Sponza scene but still remain relatively insignificant
compared to the increasing timings of the light assignment phase. Although
the total rendering performance of Volume Tiled Forward Shading technique
is improved compared to that of the Tiled Forward Shading technique, there
is still plenty of room for improvement in the light assignment phase.

In the next section a variation of the Volume Tiled Forward Shading tech-
nique is tested. In this case, a Bounding Volume Hierarchy (BVH) is con-
structed over the lights in the scene before performing the light assignment
pass.

10.5 Volume Tiled Forward Shading (BVH)

An optimized version of the Volume Tiled Forward Shading technique was
tested where a BVH was constructed over the lights before performing the
light assignment phase. Before the BVH can be constructed, the lights are
sorted according to the Z-order of the lights as explained in Chapter 6 and
5. After constructing the BVH over the lights in the scene, the performance
of the light assignment phase is significantly improved.

The passes of the Volume Tiled Forward Shading technique with BVH
optimization are:

86 Chapter 10. Results

1. Reduce Lights

2. Compute Morton Codes

3. Sort

4. Build BVH

5. Depth Prepass

6. Mark Active Tiles

7. Build Tile List

8. Assign Lights

9. Opaque Pass

10. Transparent Pass

11. Total Rendering Time

The first four stages are required to build the BVH over the lights in the
scene and are unique to the Volume Tiled Forward Shading with BVH tech-
nique. The last six stages of the Volume Tiled Forward Shading with BVH
technique are identical to that of the naïve Volume Tiled Forward Shading
technique.

The first test using the Volume Tiled Forward Shading with BVH technique
renders the Sponza scene with an increasing number of lights while main-
taining a constant volume to position the lights. This results in an increas-
ing light density.

FIGURE 10.9: Chart showing performance of rendering the
Sponza scene using Volume Tiled Forward Shading with BVH

with increasing light density.

10.5. Volume Tiled Forward Shading (BVH) 87

TABLE 10.8: Timings for rendering the Sponza scene us-
ing Volume Tiled Forward Shading with BVH with increas-
ing light density. The Reduce Lights, Compute Morton Codes,
Depth Prepass, Mark Active Tiles, and Build Tile List timings

are omitted from this table to conserve space.

Num
Lights

Sort
Build
BVH

Assign
Lights

Opaque
Pass

Transparent
Pass

Frame
Time

1024 0.177 0.035 0.361 0.593 0.132 1.639
2048 0.224 0.034 0.447 0.782 0.167 1.996
4096 0.290 0.050 0.609 1.333 0.278 2.900
8192 0.365 0.052 0.798 2.350 0.476 4.391
16384 0.448 0.051 1.000 4.325 0.812 6.985
32768 0.535 0.055 1.281 8.117 1.541 11.878
65536 0.774 0.072 1.791 16.334 3.082 22.413
131072 1.188 0.166 2.692 32.294 6.114 42.843

As expected with increasing light density, the opaque shading pass con-
sumes a significant portion of the rendering time. What is interesting is that
the timings for the sorting and the light assignment phases remains almost
constant during this test.

In the next test, the Sponza scene was rendered again this time main-
taining a maximum light density of 1 light/unit3.

FIGURE 10.10: Chart showing performance of rendering
the Sponza scene using Volume Tiled Forward Shading with

BVH with maximum light density of 1 light/unit3.

88 Chapter 10. Results

TABLE 10.9: Timings for rendering the Sponza scene using
Volume Tiled Forward Shading with BVH with maximum light
density of 1 light/unit3. The Reduce Lights, Compute Morton
Codes, Depth Prepass, Mark Active Tiles, and Build Tile List

timings are omitted from this table to conserve space.

Num
Lights

Sort
Build
BVH

Assign
Lights

Opaque
Pass

Transparent
Pass

Frame
Time

30,000 0.342 0.053 0.617 1.579 0.322 3.232
50,000 0.474 0.100 0.599 1.515 0.289 3.299
100,000 0.825 0.158 0.596 1.496 0.273 3.690
200,000 1.361 0.230 0.643 1.448 0.273 4.327
500,000 3.310 0.468 0.608 1.388 0.259 6.501
1,000,000 5.691 0.840 0.681 1.385 0.264 9.501
2,000,000 12.018 2.476 1.014 1.309 0.248 18.055
3,000,000 16.199 4.160 0.911 1.354 0.270 24.246
4,000,000 21.492 6.203 0.968 1.406 0.267 32.037
5,000,000 29.818 8.297 0.937 1.376 0.273 42.754
6,000,000 35.701 9.981 1.242 1.277 0.260 50.875
7,000,000 41.238 11.817 1.069 1.311 0.255 58.452

In this test, the timings for the opaque and transparent shading passes
remains constant and the primary overhead of the technique is consumed
by the sorting and BVH construction phases.

In the next test, the San Miguel scene is rendered using the Volume Tiled
Forward Shading with BVH technique while maintaining a maximum light
density of 1 light/unit3.

10.5. Volume Tiled Forward Shading (BVH) 89

FIGURE 10.11: Chart showing performance of rendering
the San Miguel scene using Volume Tiled Forward Shading

with BVH with maximum light density of 1 light/unit3.

TABLE 10.10: Timings for rendering the San Miguel scene
using Volume Tiled Forward Shading with BVH with max-
imum light density of 1 light/unit3. The Reduce Lights,
Compute Morton Codes, Depth Prepass, Mark Active Tiles, and
Build Tile List timings are omitted from this table to conserve

space.

Num
Lights

Sort
Build
BVH

Assign
Lights

Opaque
Pass

Transparent
Pass

Frame
Time

500000 3.573 0.500 1.229 4.328 4.277 20.102
1000000 6.157 0.899 1.607 6.301 7.106 28.410
2000000 12.804 2.650 2.151 6.573 7.506 38.293
3000000 17.382 4.456 3.981 10.297 12.952 56.069

In this case, the sorting continues to be the most expensive phase of the
technique but the overhead of the opaque and transparent shading passes
has a more noticeable effect with this scene. The fluctuations in the tim-
ings are primarily due to the difficulty in creating a good test scenario with
this scene. The San Miguel scene is much larger than the Sponza scene.
While trying to maintain a maximum light density, it was often the case
that the lights were created outside of view of the camera, resulting in a
light density of 0 light/unit3. The area in which the lights was created was
adjusted and the timings were measured again but it was difficult to main-
tain consistent results due to fluctuations in the density of the lights. Since

90 Chapter 10. Results

it is possible to determine a trend from these results, these fluctuations are
deemed acceptable for this test.

What can be observed from these results is that although the perfor-
mance of the Volume Tiled Forward Shading with BVH technique still outper-
forms that of the naïve Volume Tiled Forward Shading technique, the total
frame time exceeds the acceptable limit of 33.3ms at approximately 1.5 mil-
lion light sources. This is primarily due to the increased number of volume
tiles that are active in this scene due to the high number of transparent
samples caused by the trees in the middle of the hacienda as can be seen in
Figure 10.3.

10.6 Techniques Compared

In order to derive a general impression of the relative performance of each
of the techniques discussed in this thesis, comparisons were made showing
the performance of each technique in a single graph. The relative perfor-
mance of rendering the Sponza scene with increasing light density is shown
first.

FIGURE 10.12: Chart showing relative performance of ren-
dering the Sponza scene using Forward, Tiled Forward, Vol-
ume Tiled Forward, and Volume Tiled Forward Shading with

BVH with an increasing light density.

10.6. Techniques Compared 91

TABLE 10.11: Timings showing relative performance of ren-
dering the Sponza scene using Forward, Tiled Forward, Vol-
ume Tiled Forward, and Volume Tiled Forward Shading with

BVH with an increasing light density.

Num
Lights

Forward
Tiled
Forward

Volume Tiled
Forward

Volume Tiled
Forward (BVH)

0 0.450 0.906 0.798 0.808
2 0.691 1.043 0.833 0.951
4 0.975 1.032 0.833 0.954
8 1.475 1.049 0.852 0.955
16 2.459 1.072 0.849 0.956
32 4.416 1.100 0.875 0.975
64 8.356 1.160 0.858 0.976
128 16.304 1.257 0.923 1.067
256 32.449 1.388 0.992 1.095
512 64.810 1.633 1.064 1.227
1024 129.225 1.951 1.378 1.639
2048 3.563 2.090 1.996
4096 5.814 3.366 2.900
8192 10.433 5.833 4.391
16384 19.666 10.527 6.985
32768 38.026 20.010 11.878
65536 40.607 22.413
131072 42.843

Even with increasing light density, both the naïve and optimized Volume
Tiled Forward Shading rendering techniques outperform Tiled Forward Shad-
ing. This is primarily due to the improved light culling resulting in reduced
false positives at geometric boundaries within a tile. It can be observed
that even with a relatively low number of lights, the Volume Tiled Forward
Shading techniques outperforms Tiled Forward Shading.

Next, the relative performance of the different rendering technique is
compared when rendering the Sponza scene again but with a maximum
light density of 1 light/unit3.

92 Chapter 10. Results

FIGURE 10.13: Chart showing relative performance of ren-
dering the Sponza scene using Tiled Forward, Volume Tiled
Forward, and Volume Tiled Forward Shading with BVH with a
maximum light density of 1 light/unit3. The performance
of traditional Forward Rendering is omitted from this chart
because the timings start at 30,000 light sources which is al-

ready too many lights to gather any useful timings.

TABLE 10.12: Timings showing relative performance of ren-
dering the Sponza scene using Tiled Forward, Volume Tiled
Forward, and Volume Tiled Forward Shading with BVH with a

maximum light density of 1 light/unit3.

Num
Lights

Tiled
Forward

Volume Tiled
Forward

Volume Tiled
Forward (BVH)

30000 11.571 11.114 3.232
50000 16.683 16.810 3.299
100000 29.520 32.894 3.690
200000 54.637 64.692 4.327
500000 202.739 6.501
1000000 9.501
2000000 18.055
3000000 24.246
4000000 32.037
5000000 42.754
6000000 50.875
7000000 58.452

While maintaining a maximum light density of 1 light/unit3 the render-
ing performance of the Volume Tiled Foward Shading with BVH outperforms

10.6. Techniques Compared 93

Tiled Forward and naïve Volume Tiled Forward Shading by far. What may be
unexpected from these results is that the performance of the Tiled Forward
Shading technique outperforms that of the naïve Volume Tiled Forward Shad-
ing technique. This is likely caused by the limited density of the lights in the
scene resulting in fewer false positives at geometric boundaries mitigating
the overhead of these false positives.

Next the performance characteristics of the various rendering techniques
is analyzed while rendering the San Miguel scene.

FIGURE 10.14: Chart showing relative performance of ren-
dering the San Miguel scene using Forward, Tiled Forward,
Volume Tiled Forward, and Volume Tiled Forward Shading with

BVH with a maximum light density of 1 light/unit3.

94 Chapter 10. Results

TABLE 10.13: Timings showing relative performance of ren-
dering the San Miguel scene using Forward, Tiled Forward,
Volume Tiled Forward, and Volume Tiled Forward Shading with

BVH with a maximum light density of 1 light/unit3.

Num
Lights

Forward
Tiled
Forward

Volume Tiled
Forward

Volume Tiled
Forward (BVH)

0 6.141 6.450 9.781 8.925
2 6.733 7.032 9.893 9.942
4 7.681 7.045 9.953 10.240
8 9.819 7.030 9.910 9.756
16 14.425 7.032 9.792 9.537
32 24.005 7.036 9.627 9.595
64 43.335 6.975 9.446 9.526
128 86.109 6.713 9.403 9.420
256 160.672 6.758 9.425 9.397
512 6.759 10.352 10.606
1024 7.139 10.670 10.539
2048 7.604 11.374 10.663
4096 8.495 12.736 10.837
8192 10.041 15.389 10.781
16384 20.531 19.889 10.893
32768 46.051 29.719 11.644
65536 88.118 60.779 12.631
131072 139.965 115.488 13.154
200000 14.050
500000 20.102
1000000 28.410
2000000 38.293
3000000 56.069

In this case the performance of the Volume Tiled Forward Shading with
BVH technique clearly outperforms any of the other techniques. An unex-
pected results of this test is that the performance of the Volume Tiled Forward
Shading technique exceeds that of Tiled Forward Shading only after more than
16,384 active light sources in the scene. The improved performance of the
Tiled Forward Shading technique with less than 16,384 lights sources is due
to the reduced cost of the light assignment phase of the Tiled Forward Shading
technique that is a result of relatively fewer screen tiles than active volume
tiles in the case of Volume Tiled Forward Shading. At more than 16,384 lights,
the benefits of the improved light culling of Volume Tiled Forward Shading
on the opaque and transparent rendering passes outweighs that of the Tiled
Forward Shading technique.

10.7 Rate of Increase

In order to provide an overall impression of the performance difference
between the various techniques, the rate of increase (r) is computed using

10.8. Summary 95

equation 10.1.

r = 100

(
tmax − tmin
lmax − lmin

)
(10.1)

where tmax is the maximum measured time, tmin is the minimum mea-
sured time, lmax is the maximum number of lights tested, and lmin is the
minimum number of lights tested. The rate of increase is multiplied by 100
to shift the values into a meaningful range.

TABLE 10.14: Relative rate of increase (r) for Forward Ren-
dering (FR), Tiled Forward Shading (TFS), Volume Tiled For-
ward Shading (VTFS), and Volume Tiled Forward Shading with

BVH (VTFSBVH).

Technique Sponza
Sponza
(1 light/unit3)

San Miguel
(1 light/unit3)

FR 12.576 - 60.363
TFS 0.113 0.025 0.102
VTFS 0.061 0.041 0.081
VTFSBVH 0.032 0.00079 0.00157

10.8 Summary

In summary, the performance of the Volume Tiled Forward Shading with BVH
technique outperforms all other techniques tested in this experiment when
the number of lights in the scene exceeds 16,384, regardless of the light den-
sity and number of transparent objects in the scene. For scenes with less
than 512 light sources, a simpler technique such as Tiled Forward Rendering
exhibits decent performance characteristics, but if there is a requirement
to support a large number of active light sources in the scene, then it is
recommended to invest the time and effort required to implement a render-
ing technique that optimizes the light assignment phase such as the Volume
Tiled Forward Shading with BVH technique described in this thesis.

97

Chapter 11

Conclusion & Future Work

11.1 Summary

As shown in Chapter 10, the primary bottleneck of the Volume Tiled Forward
Shading technique is the Assign light to tiles pass providing an obvious op-
portunity to optimize this technique. To optimize the Assign lights to tiles
pass, a Bounding Volume Hierarchy (BVH) is constructed over the lights
in the scene. By traversing the BVH in the Assign lights to tiles pass, the
complexity of that pass is effectively reduced from O(mn) to O(m log32 n)
where m is the number of active volume tiles and n is the number of active
lights in the scene.

The construction of the BVH requires the lights in the scene to be sorted
by their Z-order (Dickau, 2008). The time required to sort the lights within
the scene imposes a performance overhead of O(n log2 n). Although the
additional performance overhead of sorting does not outweigh the perfor-
mance gains of the Assign lights to tiles pass, it does provide an opportunity
to improve the performance of the sorting algorithm.

In the next section, several areas where the Volume Tiled Forward Shad-
ing technique can be improved are explored.

11.2 Future Work

Similar to any experimental rendering technique, the Volume Tiled Forward
Shading technique can be improved in several areas. For example, the Vol-
ume Tiled Forward Shading technique utilises several render passes over the
scene geometry; Depth pre-pass, Mark active tiles, and the shading passes each
require the geometric objects in the scene to be rendered. These rendering
passes invoke expensive draw calls from the rendering API. Several options
to mitigate the CPU overhead imposed by the rendering API are suggested.

Another area for improvement of the Volume Tiled Forward Shading tech-
nique is in the volume of the volume tiles that are further away from the
camera. Volume tiles close to the camera are small but volume tiles further
away from the camera become large. The larger volume tiles can potentially
contain many lights that do not necessarily contribute to the final shading
of the geometry contained within the volume tile. A method that makes
better use of the depth buffer during the Assign lights to title phase (similar
to that used by the Tiled Forward Shading) is considered.

Sorting the lights is a required step before the BVH can be constructed
over the lights but sorting also imposes a new limiting factor for further im-
proving the Volume Tiled Forward Shading rendering technique. We explore

98 Chapter 11. Conclusion & Future Work

several techniques that may help to mitigate the performance overhead of
the sorting phase.

11.2.1 Reducing Draw Calls

The Volume Tiled Forward Shading rendering technique utilizes several ren-
der passes in order to determine the active volume tiles in the scene and to
perform final shading. Each of these passes requires the visible objects in
the scene to be drawn using one of the draw calls from the rendering API.
For rendering static geometry, the overhead of invoking the draw function
in the rendering API may be minimal but if the scene contains a lot of ani-
mated objects, the cost of computing vertex, geometry, or tessellation passes
may prove to be expensive.

One way to reduce the overhead of invoking the draw calls on the API
is by using indirect draw or indirect compute (or more generally referred to as
execute indirect). Execute indirect works by creating a structured buffer on
the GPU that contains all of the arguments, draw parameters, or dispatch
parameters that need to be invoked in order to render the scene. When all of
the scene objects need to be drawn, only a single execute indirect function
needs to be called through the rendering API and thousands of scene objects
can be rendered, avoiding the cost of invoking those draw calls on the CPU.

If the scene contains a lot of animated objects, it may be expensive to
perform the vertex transformations required by (for example), a skeletal
animated mesh, or to invoke the tessellation stages that are used to create
highly detailed terrain, or ocean simulation. In this case, the tessellated and
transformed vertices can be stored in a feedback buffer that can be reused
for later stages thus eliminating the need to re-transform all of the vertex
data several times per frame.

11.2.2 Self-Similar Volume Tiles

Similar to Tiled Forward Shading, Volume Tiled Forward Shading defines square
tiles in screen space that when extruded actually form frusta in view space.
When using a perspective projection matrix, the frustums become larger
further away from the camera and thus cover a larger volume in space.
Volume tiles closer to the camera are small and may only cover a few lights
in the scene, but the volume tiles further away from the camera grow ex-
ponentially in volume. The larger the volume tile is, the more lights will
fit within the tile and therefore the more lights must be considered when
shading all of the samples that are contained within that volume tile.

The speed of the rendering technique is dependent on the number of
lights that must be considered during shading. As can be seen from the
performance results in Chapter 10, the Forward Rendering technique shows
the poorest performance profile. The goal of both the Tiled Forward Shading,
and Volume Tiled Forward Shading rendering techniques is to minimize the
number of lights that need to be considered during shading. If even a single
screen pixel needs to consider many lights during shading, then the total
performance benefit of Tiled, or Volume Tiled Forward Rendering is lost.

11.3. Conclusion 99

One possible method to reduce the shading cost per volume tile, is to
minimize the area of the volume tile that contains visible samples. A tech-
nique similar to Tiled Forward Rendering that uses the depth buffer to con-
strain the minimum and maximum depth values during light assignment
could be used. This would require an additional buffer that contains the
minimum and maximum depth values per volume tile to be used. The
minimum and maximum values of the tile could be determined during the
Mark active tiles pass. It should be noted that both the opaque and trans-
parent objects in the scene must be considered when determining the min-
imum and maximum depth values within a tile. During the Assign lights
to tiles pass, the AABB of the volume tile can be adjusted to account for
the minimum and maximum depth values thus restricting the bounds of
the tile to minimum bounding volume of the visible samples, instead of the
entire volume tile.

11.2.3 Improved Sorting

Sorting is a difficult problem to solve efficiently. The techniques presented
in this thesis offers favourable performance results but there is always room
for improvement. The sorting stage is executed directly on the GPU in order
to take advantage of the massive parallelism of the GPU and to avoid the
need to transfer the sorted light indices from CPU to GPU but there might
be an advantage to performing the sorting on the CPU. If the application is
not CPU-bound then it might be a good idea to utilize the CPU to perform
sorting at the same time the scene is being rendered on the GPU. Perform-
ing the sorting on the CPU would result in the sorted light indices being a
frame behind but the 1-frame delay may not be that noticeable when ren-
dering can be achieved at 60 or 90 FPS.

Radix sort and merge sort were the only sorting techniques explored
during the creation of this thesis. Not all possible optimizations for radix
sort and merge sort were explored. For example, Chapter 4 only describes
a naïve approach of the parallel scan operation. A more efficient technique
for performing a parallel prefix sum is described in Chapter 39 of GPU
Gems 3 (Harris, Sengupta, and Owens, 2008) but this technique was not
implemented in this experiment.

When sorting was implemented for the experiment, an assumption was
made about the overhead of performing a merge sort on the GPU with only
2 values. For this reason, the radix sort algorithm was used to sort chunks of
256 values. The chunks of 256 values are merged using several iterations of
the merge sort algorithm. If an efficient technique for merge sorting small
chunks on the GPU can be created then it may perform better if only the
merge sort algorithm described in this thesis is used to sort all of the values.

11.3 Conclusion

In this thesis the Volume Tiled Forward Shading technique is introduced. Vol-
ume Tiled Forward Shading technique extends upon the Tiled Forward Shading
technique by dividing along the depth of the uniform scree-space tiles of
the Tiled Forward Shading technique into self-similar 3D volume tiles. The

100 Chapter 11. Conclusion & Future Work

geometry of the scene is rendered and any volume tile that contains a visi-
ble sample is activated and the lights in the scene are assigned to the active
tiles. In the shading pass, only the lights that are contained in the same
volume tile as the sample need to be considered. This technique proves to
be very efficient at reducing the false positives that are generated by the
elongated frustums created by Tiled Forward Shading technique and shows
a consistent performance gain in the opaque and shading passes compared
to Tiled Forward Shading. On average, the basic implementation of the Vol-
ume Tiled Forward Shading performs better than Tiled Forward Shading when
the number of lights in the scene exceeds 16,384.

The performance of the Volume Tiled Forward Shading technique can be
further improved by building a Bounding Volume Hierarchy (BVH) over
the lights before the light assignment to volume tiles is performed.

The goal of this experiment was to support 1 million active dynamic
scene lights while still maintaining real-time frame rates on commodity
desktop graphics hardware. This goal (and beyond) has been achived as
can be seen in the performance results shown in Chapter 10. It is safe to say
that the results of this experiment have been successfully demonstrated.

101

Bibliography

AMD (2012). AMD Graphics Cores Next (GCN) Architecture. Advanced Mi-
cro Devices Inc. URL: https://www.amd.com/Documents/GCN_
Architecture_whitepaper.pdf.

Blelloch, G.E. (1989). “Scans as primitive parallel operations”. In: IEEE Trans-
actions on Computers 38.11, pp. 1526–1538. DOI: 10.1109/12.42122.
(Visited on 02/17/2017).

Catmull, Edwin (1974). “A Subdivision Algorithm for Computer Display of
Curved Surfaces”. PhD thesis. University of Utah.

Clark, James H. (1976). “Hierarchical geometric models for visible surface
algorithms”. In: Communications of the ACM 19.10, pp. 547–554. DOI: 10.
1145/360349.360354.

Crytek (2010). URL: http://www.crytek.com/cryengine/cryengine3/
downloads (visited on 01/04/2017).

Deering, Michael et al. (1988). “The triangle processor and normal vector
shader”. In: ACM SIGGRAPH Computer Graphics 22.4, pp. 21–30. DOI:
10.1145/378456.378468.

Dickau, Robert (2008). Lebesgue 3D curve, iteration 2. URL: https://commons.
wikimedia.org/wiki/File:Lebesgue-3d-step2.png (visited
on 01/31/2017).

dyn4j (2017). URL: http://www.dyn4j.org/2010/01/sat/ (visited on
07/10/2017).

Geldreich, Rich and Matt Pritchard (2004). GDC Vault - Deferred Shading on
DX9 Class Hardware and the Xbox. URL: http://www.gdcvault.com/
play/1015172/Deferred-Shading-on-DX9-Class (visited on
09/27/2016).

Green, Oded, Robert McColl, and David A. Bader (2012). “GPU merge path”.
In: Proceedings of the 26th ACM international conference on Supercomputing
- ICS ’12. DOI: 10.1145/2304576.2304621. (Visited on 02/17/2017).

Harada, Takahiro (2012). “A 2.5D Culling for Forward+”. In: SIGGRAPH
Asia 2012 Technical Briefs. SA ’12. Singapore, Singapore: ACM, 18:1–18:4.
ISBN: 978-1-4503-1915-7. DOI: 10.1145/2407746.2407764. URL: http:
//doi.acm.org/10.1145/2407746.2407764.

Harada, Takahiro, Jay McKee, and Jason C. Yang (2012). “Forward+: Bring-
ing Deferred Lighting to the Next Level”. In: Eurographics 2012 - Short
Papers. Ed. by Carlos Andujar and Enrico Puppo. The Eurographics As-
sociation. DOI: 10.2312/conf/EG2012/short/005-008.

Hargreaves, Shawn and Mark Harris (2004). Deferred Shading.
Harris, Mark, Shubhabrata Sengupta, and John D. Owens (2008). “Parallel

Prefix Sum (Scan) with CUDA”. In: GPU Gems 3. Ed. by Hubert Nguyen.
1st ed. Addison-Wesley, pp. 871–873. (Visited on 02/17/2017).

Karras, Tero (2012). Thinking Parallel, Part II: Tree Traversal on the GPU. URL:
https://devblogs.nvidia.com/parallelforall/thinking-
parallel-part-ii-tree-traversal-gpu/ (visited on 01/05/2017).

Leeuw, Michiel van der (2007). Deferred Rendering in Killzone 2.

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://doi.org/10.1109/12.42122
https://doi.org/10.1145/360349.360354
https://doi.org/10.1145/360349.360354
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.crytek.com/cryengine/cryengine3/downloads
https://doi.org/10.1145/378456.378468
https://commons.wikimedia.org/wiki/File:Lebesgue-3d-step2.png
https://commons.wikimedia.org/wiki/File:Lebesgue-3d-step2.png
http://www.dyn4j.org/2010/01/sat/
http://www.gdcvault.com/play/1015172/Deferred-Shading-on-DX9-Class
http://www.gdcvault.com/play/1015172/Deferred-Shading-on-DX9-Class
https://doi.org/10.1145/2304576.2304621
https://doi.org/10.1145/2407746.2407764
http://doi.acm.org/10.1145/2407746.2407764
http://doi.acm.org/10.1145/2407746.2407764
https://doi.org/10.2312/conf/EG2012/short/005-008
https://devblogs.nvidia.com/parallelforall/thinking-parallel-part-ii-tree-traversal-gpu/
https://devblogs.nvidia.com/parallelforall/thinking-parallel-part-ii-tree-traversal-gpu/

102 BIBLIOGRAPHY

Lottes, Timothy (2009). FXAA. NVIDIA Corporation. URL: http://developer.
download.nvidia.com/assets/gamedev/files/sdk/11/
FXAA_WhitePaper.pdf (visited on 07/10/2017).

McGuire, Morgan (2017). Computer Graphics Archive. https://casual-effects.com/data.
URL: https://casual-effects.com/data.

McKee, Jay (2012). Technology Behind AMD’s "Leo Demo".
Microsoft (2017). URL: https : / / msdn . microsoft . com / en - us /

library/windows/desktop/cc627092(v=vs.85).aspx#Multisample
(visited on 07/10/2017).

Mittring, Martin (2009). A bit more deferred - CryEngine 3.
Morton, G. M. (1966). A computer oriented geodetic data base and a new tech-

nique in file sequencing. 1st ed. International Business Machines Co.
NVIDIA (2016a). URL: https://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html (visited on 01/13/2017).
— (2016b). 1st ed. NVIDIA Corporation. URL: http://international.

download.nvidia.com/geforce-com/international/pdfs/
GeForce_GTX_1080_Whitepaper_FINAL.pdf (visited on 01/06/2017).

— (2016c). 1st ed. NVIDIA Corporation. URL: http://docs.nvidia.
com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf (visited on
01/06/2017).

Olsson, Ola (2015). Introduction to Real-Time Shading with Many Lights.
Olsson, Ola and Ulf Assarsson (2011). “Tiled Shading”. In: Journal of Graph-

ics, GPU, and Game Tools 15.4, pp. 235–251. DOI: 10.1080/2151237x.
2011.621761.

Olsson, Ola, Markus Billeter, and Ulf Assarsson (2012). “Clustered Deferred
and Forward Shading”. In: Eurographics/ ACM SIGGRAPH Symposium
on High Performance Graphics. The Eurographics Association. URL: http:
//dx.doi.org/10.2312/EGGH/HPG12/087- 096 (visited on
10/13/2016).

Oosten, Jeremiah van (2011). Optimizing CUDA Applications - 3D Game En-
gine Programming. URL: http://www.3dgep.com/optimizing-
cuda-applications/ (visited on 01/06/2017).

— (2014). Introduction to DirectX 11. URL: http://www.3dgep.com/
introduction-to-directx-11 (visited on 09/21/2016).

— (2015). Forward vs Deferred vs Forward+ Rendering with DirectX 11. URL:
http://www.3dgep.com/forward-plus (visited on 09/29/2016).

Saito, Takafumi and Tokiichiro Takahashi (1990). “Comprehensible render-
ing of 3-D shapes”. In: ACM SIGGRAPH Computer Graphics 24.4, pp. 197–
206. DOI: 10.1145/97880.97901.

Segal, Mark and Kurt Akeley (1994). The OpenGL Graphics System: A Spec-
ification. 1st ed. Silicon Graphics, Inc. URL: https://www.opengl.
org/registry/doc/glspec10.pdf (visited on 09/21/2016).

— (2004). The OpenGL Graphics System: A Specification. 2nd ed. Silicon Graph-
ics Inc. URL: https://www.opengl.org/registry/doc/glspec20.
20041022.pdf (visited on 09/23/2016).

Shishkovtsov, Oles (2006). “Deferred Shading in S.T.A.L.K.E.R.” In: GPU
Gems 2: Programming Techniques For High-Performance Graphics And General-
Purpose Computation. Ed. by Randima Pharr MattFernando. 3rd ed. Pear-
son Addison Wesley Prof. URL: http://http.developer.nvidia.
com/GPUGems2/gpugems2_chapter09.html (visited on 09/27/2016).

http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://casual-effects.com/data
https://msdn.microsoft.com/en-us/library/windows/desktop/cc627092(v=vs.85).aspx#Multisample
https://msdn.microsoft.com/en-us/library/windows/desktop/cc627092(v=vs.85).aspx#Multisample
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://doi.org/10.1080/2151237x.2011.621761
https://doi.org/10.1080/2151237x.2011.621761
http://dx.doi.org/10.2312/EGGH/HPG12/087-096
http://dx.doi.org/10.2312/EGGH/HPG12/087-096
http://www.3dgep.com/optimizing-cuda-applications/
http://www.3dgep.com/optimizing-cuda-applications/
http://www.3dgep.com/introduction-to-directx-11
http://www.3dgep.com/introduction-to-directx-11
http://www.3dgep.com/forward-plus
https://doi.org/10.1145/97880.97901
https://www.opengl.org/registry/doc/glspec10.pdf
https://www.opengl.org/registry/doc/glspec10.pdf
https://www.opengl.org/registry/doc/glspec20.20041022.pdf
https://www.opengl.org/registry/doc/glspec20.20041022.pdf
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html

BIBLIOGRAPHY 103

Singer, Graham (2013). The History of the Modern Graphics Processor. URL:
http://www.techspot.com/article/650-history-of-the-
gpu (visited on 09/21/2016).

Wilt, Nicholas (2013). The CUDA Handbook: A Comprehensive Guide to GPU
Programming. 1st ed. Addison-Wesley, pp. 365–383.

Young, Eric (2010). DirectCompute Optimizations and Best Practices. URL: http:
//on-demand.gputechconf.com/gtc/2010/presentations/
S12312-DirectCompute-Pre-Conference-Tutorial.pdf (vis-
ited on 01/20/2017).

Zhang, Hansong et al. (1997). “Visibility culling using hierarchical occlusion
maps”. In: Proceedings of the 24th annual conference on Computer graphics
and interactive techniques - SIGGRAPH ’97. DOI: 10.1145/258734.
258781.

http://www.techspot.com/article/650-history-of-the-gpu
http://www.techspot.com/article/650-history-of-the-gpu
http://on-demand.gputechconf.com/gtc/2010/presentations/S12312-DirectCompute-Pre-Conference-Tutorial.pdf
http://on-demand.gputechconf.com/gtc/2010/presentations/S12312-DirectCompute-Pre-Conference-Tutorial.pdf
http://on-demand.gputechconf.com/gtc/2010/presentations/S12312-DirectCompute-Pre-Conference-Tutorial.pdf
https://doi.org/10.1145/258734.258781
https://doi.org/10.1145/258734.258781

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Research Question

	Background
	Previous Work
	Forward Rendering
	Deferred Shading
	Geometry Pass
	Lighting Pass

	Tiled Forward Shading
	Cull Lights
	Shade Samples
	Depth Prepass

	Clustered Shading
	Cluster Assignment
	Find Unique Clusters
	Assign Lights
	Shade Samples

	Summary

	GPU Architecture
	Introduction
	Thread Dispatch
	Coalesced Access to Global Memory
	Avoid Bank Conflicts

	Parallel Primitives
	Introduction
	Reduction
	Scan

	Sorting
	Introduction
	Radix Sort
	Merge Sort

	Morton Code
	Introduction
	Minimum Bounding Volume
	Compute Morton Codes

	Bounding Volume Hierarchy
	Introduction
	BVH Construction
	Build Leaf Nodes
	Build Upper Nodes

	BVH Traversal

	Implementation
	Introduction
	Volume Tiled Forward Shading
	Initialization
	Compute Grid Size
	Compute AABBs

	Update
	Depth Pre-pass
	Mark Active Tiles
	Build Tile List
	Assign Lights to Tiles
	Shade Samples

	Optimization

	Summary

	Experiment Setup
	Introduction
	Application
	Graphics API
	GPU Hardware
	Scenes
	Algorithms
	Profiling
	Tests

	Results
	Introduction
	Forward Rendering
	Tiled Forward Shading
	Volume Tiled Forward Shading
	Volume Tiled Forward Shading (BVH)
	Techniques Compared
	Rate of Increase
	Summary

	Conclusion & Future Work
	Summary
	Future Work
	Reducing Draw Calls
	Self-Similar Volume Tiles
	Improved Sorting

	Conclusion

	Bibliography

